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a b s t r a c t

In traditional Arabian medicine, the Rhus tripartita plant (family Anacardiaceae) has been

used to treat inflammatory conditions. Although Rhus extracts have been reported for their

cardioprotective effects, information regarding their active principle compounds remains

insufficient. The present investigation was aimed at determining the antioxidant chemical

constituents of the methanolic extract of R. tripartita stem bark and evaluating their ability

to ameliorate methylglyoxal-induced endothelial cell apoptosis. Ten flavonoid compounds

(1e10) were isolated and identified using DPPH radical scavenging bioassay-guided chro-

matographic separation. A new proanthocyanidin (rhuspartin) (1) was isolated and iden-

tified as 3,5,13,14-flavantetrol-(4b/8)-catechin, using extensive spectroscopic data and

high resolution-mass spectrometry. Among the compounds (1, 5, 7e10) tested for toxicity

toward cultured endothelial cells (HUVECs), the non-cytotoxic compounds 1 and 7 evinced

cytoprotective potential that reversed the methylglyoxal-induced apoptosis (by 62% and

64%, respectively) through downregulation of caspase 3/7.
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1. Introduction

The family Anacardiaceae, which consists of 73 genera and

approximately 600 species [1,2], is comprised mainly of trees,

shrubs, and/or woody vines. The majority of these belong to

the genus Rhus [3,4], including over 250 species that bear the

common name sumac [5]. It is widely distributed in the tro-

pics, subtropics, and various global temperate zones and is

known to be rich in flavonoids, bioflavonoids, and proantho-

cyanidins [6e10]. In particular, Rhus tripartita (Ucria) Grande is

distributed primarily in North Africa and in northeastern part

of Saudi Arabia [5]. In Arabian traditional medicine, this plant

has been used for the treatment of cardiovascular and

gastrointestinal disorders along with inflammatory condi-

tions [5,11]; its other reported biological activities also include

antioxidant, antidiarrheal, and antiulcer effects [12].

Methylglyoxal (MGO), a highly reactive dicarbonyl com-

pound, is generated endogenously as well as in several food-

stuffs and beverages during processing, cooking, or storage as

a by-product of glycolysis [13,14]. High level of plasma MGO is

associated with type 2 diabetes mellitus and considered as a

causative factor in atherosclerosis and macrovascular dis-

eases [15,16]. Notably, in cultured endothelial cells (ECs), MGO

rapidly causes a hyperglycemic state that damages ECs func-

tion and becomes a prominent factor in most diabetic com-

plications [17,18]. Furthermore, ECs play an important role in

modulating vascular function and homeostasis; thus, their

dysfunction as result of inflammation and apoptosis can be an

initiating event in atherogenesis [19].

In our previous work, we demonstrated the therapeutic na-

ture of R. tripartita stem bark including its cardiovascular, anti-

oxidant, and anti-inflammatory effects [5,8]. The aim of the

present study was to isolate and identify the antioxidant com-

pounds, in particular those of phenolic nature, from the stem

barkofR. tripartita. Inaddition,weassessed theiractivity toward

reversing the endothelial apoptosis mediated by MGO to high-

light the potential use of this plant as a source of safe and

effective drugs against diabetic cardiovascular complications.

2. Materials and methods

2.1. General methods

Optical rotationsweremeasured on a PerkineElmerModel 343

polarimeter (Waltham, MA, USA). CD spectra were recorded

on a Jasco J-815 spectrophotometer in 1-cm cuvettes at room

temperature. Nuclearmagnetic resonance (NMR) spectrawere

recorded in deuterated dimethylsulfoxide (DMSO-d6) on an

UltraShield Plus system (Bruker Biospin GmbH, Rheinstetten,

Germany) operating at 700 MHz for 1H and at 175 MHz for 13C.

HPLC was carried out using a Phenomenex Jupiter Proteo

column (Jupiter Proteo 90 �A, 250 � 10 mm, 4 mm; Torrance, CA,

USA) on a Shimadzu HPLC-LC-20 AD series binary gradient

pump and a Shimadzu SPD-M20A detector (Tokyo, Japan).

Columnchromatography (CC)was carriedout onSephadex LH-

20 (Pharmacia, Uppsala, Sweden) using ethanol as the eluent.

2.2. Plant material

R. tripartita stem bark was collected from Hail in the north-

western region of Saudi Arabia in April 2013. The plant was

identified and authenticated by an expert taxonomist at the

HerbariumUnit, Collegeof Pharmacy, King SaudUniversity. The

voucher specimen has been deposited (SY 202/2013) at the her-

bariumof theFacultyofPharmacy,KingSaudUniversity,Riyadh,

Saudi Arabia.

2.3. Extraction and isolation

Using 4000 ml of 80% aqueous methanol, 1100 g of air-dried

powdered stem barks was extracted by maceration three

times. The alcoholic extract was filtered and concentrated

under reduced pressure at 40 �C to yield a dry extract of 231 g

(21%). Part of the dry extract (100 g) was partitioned in 400ml of

distilled water and subjected successively to solvent fraction-

ationwith dichloromethane (CH2Cl2), ethyl acetate (EtOAc), and

n-butanol (n-BuOH) (3 � 400 ml) until complete exhaustion in

each fractionation step to yield a dichloromethane fraction

(RTSM1) (7.3 g), ethyl acetate (RTSM2) (20 g), n-butanol (RTSM3)

(8.7 g), and an aqueous fraction (RTSM4) (13.8 g). The EtOAc

fraction (RTSM2)was subjected to gel filtration chromatography

by using a Sephadex LH-20 column (Pharmacia) (90� 4 cm) and

EtOH as the mobile phase. The fractions (50 ml each) were

collected and examined by thin-layer chromatography (TLC;

Silica gel 60 F254plate,Merck,Kenilworth,NJ,USA)usingEtOAc-

HOAc-HCOOH-H2O (30/0.8/1.2/8) as the solvent system.TheTLC

platewas examinedunderUV (254 and 366 nm) before and after

sprayingwithvanillinH2SO4 (reagentA)andNeu's spray reagent
(reagent B). A total of 86 fractions were collected, and similar

fractions were combined to yield seven groups: RTSM2-I, fr.

1e15; RTSM2-II, fr. 16e20; RTSM2-III, fr. 21e35; RTSM2-IV, fr.

36e45; RTSM2-V, fr. 46e60; RTSM2-VI, fr. 61e74; andRTSM2-VII,

fr. 75e86. The sub-fractions was subjected to reversed-phase

HPLC (Jupiter Proteo 90 �A, 250 � 10 mm, 4 mm) using a 5e70%

CH3CNeH2O gradient over 40 min, and the following com-

pounds were obtained: (2), 16.1 mg yellow amorphous powder;

(4), 7.9 mg yellow amorphous powder, and (5), 11.6 mg yellow

amorphous powder from RTSM2-II; (3) and (6), 10.2 and 3.8 mg

yellow amorphous powders, respectively, from RTSM2-III; (7)

and (1), 14.1 and 11.3 mg yellow amorphous powders, respec-

tively, from RTSM2-IV; (8), (9) and (10), 9.1, 12.6 and 5.5 mg yel-

low amorphous powders, respectively, from RTSM2-V.
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2.4. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical-
scavenging assay

The radical-scavenging activity of the isolated compounds

against DPPH* was assessed with a rapid TLC screening

method using 0.2% DPPH in MeOH. At 30 min after spraying,

the active compounds appeared as yellow spots against a

purple background [20,21].

2.5. Cell culture and compounds preparation

Human umbilical vein endothelial cells (HUVEC 16549) were

maintained in Dulbecco's modified Eagle medium-GlutaMax

(DMEM-GlutaMax) medium (Gibco, Gaithersburg, MD, USA),

supplemented with 10% bovine serum (Gibco) and

1� penicillin-streptomycinmix (Invitrogen, Carlsbad, CA,USA)

at 37 �Cwith 5%CO2 in a humid chamber. Stocks of compounds

(1, 5, 7e10; 1mg, each)were prepared by first dissolving in 50 ml

DMSO (Sigma, Munich, Germany) and then in complete me-

dium (1 mg/ml; DMSO <0.1%, final), followed by reconstitution

in six working concentration (25, 12.5, 6.25, 3.12 and 1.56 mg/ml)

in complete medium. The DMSO (<0.1%) acted as an untreated

or negative control. The standard pro-apoptotic agentMGO [22]

and anti-apoptotic drug aminoguanidine (AG) [23] were also

prepared in DMSO and culture medium.

2.6. Cytotoxicity assay

The cytotoxic effect, if any, of compounds (1, 5, 7e10) was

tested on HUVECs using the cell proliferation assay (TACS cell

proliferation MTT assay Cell Proliferation Assay Kit, Trevigen,

Gaithersbutg, MD, USA). Briefly, HUVECs (0.5 � 105/well) were

seeded in a 96-well flat-bottom plate (BectoneDickinson

Labware, Bedford, MA, USA) and incubated overnight. The

cells were treated with the different doses (in triplicate) of the

test compounds, including untreated (DMSO) and positive

(MGO) controls. At day 3 post-treatment, cells were treated

with MTT reagent (10 ml/well) and incubated at room-

temperature for 4 h in the dark. Immediately upon the

appearance of purple color, detergent solution (100 ml/well)

was added and the cells were further incubated for 1.5 h at

37 �C. The optical density (OD; l ¼ 570) was measured

(Microplate reader ELx800; BioTek, Winooski, VT, USA). Non-

linear regression analysis was performed (Excel 2010; Micro-

soft Corp., Redmond, WA, USA) to determine the cell prolif-

eration fraction using the following equation:

Cell proliferation fraction ¼ ODseODb/ODceODb

where ODs, ODb, and ODc are the absorbance of sample,

blank, and negative control, respectively. Data were subjected

to non-linear regression analysis (Excel) and presented as %

cell survival in relation to the untreated control.

2.7. Anti-apoptotic/cytoprotective assay

The two non-cytotoxic compounds 1 and 7were further tested

for their cytoprotective/anti-apoptotic potential on HUVECs.

In brief, HUVECs (0.5 � 105/well) were seeded in a 96-well flat-

bottom plate (BectoneDickinson Labware) and incubated

overnight. The pro-apoptotic agent MGO (0.5 mM) was added

to the cells followed by co-treatment with different doses (25,

12.5, 6.25 and 3.12 mg/ml) of 1 and 7 as well as the standard

anti-apoptotic drug AG (0.05 mM) in triplicate. At day 3 post-

incubation, MTT assay was performed as in section 2.6 and

OD were measured. Data were subjected to non-linear

regression analysis and presented as % increase in cell pro-

liferation/survival in relation to the standard control.

2.8. Apoptotic signaling (caspase-3/7) assay

To assess in vitro caspase-3/7 activation, HUVECs (0.5 � 105/

well) were treated with the anti-apoptotic compounds 1 and 7

(25 mg/ml, each), AG (0.05 mM), and MGO (0.5 mM), and were

assayed on day 3 (Apo-ONE-cas3/7 Assay Kit; Promega, Mad-

ison,WI, USA) as per the suppliedmanual. Briefly, caspase-3/7

reagent was added (100 ml/well) and cells were incubated in

the dark at room temperature for 5 h. The OD was measured,

and data were subjected to non-linear regression analysis and

presented as % inhibition of caspase-3/7 activity in relation to

the standard control.

3. Results and discussion

3.1. Identification of isolated compound

A radical-scavenging guided phytochemical study on the stem

bark of R. tripartita led to the isolation and identification of 10

flavonoids (Fig. 1). The structures of these compounds were

elucidated by extensive 1D and 2D NMR analyses, accurate

massmeasurements, and comparisonwith reported data. The

flavonoidswere identified as catechin (2) [24], gallocatechin (3)

[24], taxifolin (4) [25], epicatechin (5) [24], epigallocatechin (6)

[24], epicatechin-3-O-rhamnoside (7) [26], mesuaferrone-A (8)

[27], myricetin-3-O-glucopyranoside (9) [28], and 200,300-dihy-
drohinokiflavone (10) [29]. All physical and spectral data of

these compounds were in agreement with the respective

published data.

Rhuspartin (1) was obtained as a yellow amorphous solid

([a]25D 144.7� (c 0.3, MeOH)). High-resolution electrospray

ionization mass spectrometry (HRESIMS) showed a pseudo-

molecular ion peak at m/z 561.1400 [M�H]� (calcd 561.1402)

consistent with amolecular weight of 562 amu. Themolecular

formula was established as C30H26O11, implying 18 degrees of

unsaturation. The UV spectrum in MeOH showed absorption

bands at lmax 215and 282 nm, while the IR spectrum showed

strong absorption bands at 3387 (OH), 1620 (C]C) and 1165 (C-

O, 2� alcohol) cm�1.

The 1H, 13C, and DEPT-135 NMR spectroscopy (Table 1) in

combination with 2D 1H-13C heteronuclear single quantum

correlation (HSQC) analysis of (1) in DMSO-d6 (supplementary

data, S2eS7) revealed the presence of one sp3 methylene

group H-4ʹ [dH 2.64 (1H, dd, J ¼ 5.0, 16.1 Hz) and dH 2.44 (1H, dd,

J ¼ 7.0, 16.1 Hz); dC 27.9]; one sp3 methine H-4 [dH 4.49 (1H, d,

J ¼ 2.0 Hz); dC 30.8]; four oxygen-bearing sp3 methines H-2 [dH
5.21 (1H, brs); dC 79.9], H-3 [dH 4.35 (1H, m); dC 70.7], H-2ʹ [dH 4.43

(1H, d, J ¼ 7.1 Hz); dC 80.5], and H-3ʹ [dH 3.74 (1H, m); dC 66.4]; ten

sp2 aromaticmethines grouped by the 1H-1H COSY experiment

into four spin systems of one 1,2,3-trisubstituted aromatic spin
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systemH-6 [dH 6.15 (1H, d, J¼ 8.0 Hz), dC 107.8], H-7 [dH 6.34 (1H,

m), dC 128.8], andH-8 [dH 6.33 (1H, d, J¼ 8.0Hz), dC 102.3] of ringA

upper unit; an isolated aromatic proton H-6ʹ [dH 5.91 (1H, s), dC
97.0] of ring A lower unit; and two ABX aromatic systems of H-

12 [dH 6.69 (1H, s), dC 113.0], H-15 [dH 6.50 (1H, d, J ¼ 8.0 Hz), dC
115.7], and H-16 [dH 6.48 (1H, d, J ¼ 8.0 Hz), dC 115.8] of ring B

upper unit; andH-12ʹ [dH 6.64 (1H, s), dC 114.4], H-15ʹ [dH 6.71 (1H,

d, J ¼ 8.0 Hz), dC 115.5], and H-16ʹ [dH 6.28 (1H, d, J ¼ 8.0 Hz), dC
116.9] of ring B lower unit. In addition, 14 quaternary carbon

atoms comprising nine oxygenated aromatic carbons C-5, C-9,

C-13, and C-14 (dC 156.6, 153.9, 145.1, and 144.5 ppm, respec-

tively) of the upper unit and C-5ʹ, C-7ʹ, C-9ʹ, C-13ʹ, and C-14ʹ (dC
155.1, 155.3, 153.6, 144.5, and 144.4 ppm, respectively) of the

lower unit; and five non-oxygenated aromatic carbons C-10, C-

11, C-8ʹ, C-10ʹ, and C-11ʹ (dC 112.7, 130.9, 104.4, 99.5, and

130.4 ppm, respectively) were observed. Nine hydrogen

resonances lacked correlations in the HSQC spectrum of 1 and

were therefore recognized as being located on hetero-atoms

that were identified subsequently as hydroxyl protons for OH-

3 [dH 6.84 (1H, brs)] and OH-3ʹ [dH 4.92 (1H, d, J ¼ 4.2 Hz)], in

addition to seven hydroxyls on aromatic systems OH-5, OH-13,

OH-14, OH-5ʹ, OH-7ʹ, OH-13ʹ, and OH-14ʹ [dH (8.63e9.24)].

The NMR data indicated the structure of dimeric proan-

thocyanidins with two flavan-3-ol moieties. The presence of

two flavanyl units was determined from the 1H and 13C NMR

data, with the occurrence of two sets of distinct key signals C-

2, C-3, and C-4 for the upper unit, and C-2ʹ, C-3ʹ, and C-4ʹ for

the lower unit [30,31]. The resonance changes of sets indicated

that conformational isomerism may exist, which caused by

the steric interaction (restricted rotation) between the upper

and lower units. This kind of isomerism is well known and

observable in many cases of procyanidin oligomers.

Fig. 1 e Chemical structures of the isolated compounds (1e10); Glc: glucose, Rha: rhamnose.
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An analysis of the vicinal coupling constants of the C-ring

protons H-2 and H-3 revealed the nature of the units. A large

value (7.1 Hz) for J2,3 indicated a (þ)-catechin unit (2,3-trans) for

the lower unit and a broad singlet indicated an (�)-epicatechin

unit (2,3-cis) or epicatechin derivatives (3,5,13,14-flavantetrol

unit) [31]. Thus, the upper unit was identified as 3,5,13,14-

flavantetrol, whereas the lower unit was identified as

(þ)-catechin.

The 1H-13C heteronuclear multiple bond correlation

(HMBC) analysis of 1 (Fig. 2A) showed the connectivity of

the unit based on the observed correlation between H-4 and

C-3, C-9, and C-8ʹ, indicating that the connection between

the upper and lower units was established between C-4 and

C-8ʹ. Comparison of 1 with compounds 2 and 5 showed that

dimerization at C-8ʹ led to a loss of proton H-8ʹ and a

downfield shift of C-8ʹ from dC 94.5 in (2) to dC 104.4 in (1).

Moreover, downfield shifts were also observed for C-4 from

dC 28.3 in (5) to dC 30.8 in (1), for C-3 from dC 65.0 in (5) to dC

70.7 in (1), and for C-2 from dC 78.1 in (5) to dC 79.9 in (1).

Furthermore, key HMBC correlations from H-7 (dH 6.34) to C-

5 (dC 156.6) accompanied by the 1H-1H COSY correlation

between H-7/H-6, and H-7/H-8 indicated the loss of the

hydroxyl group at C-7 and confirmed the 3,5,13,14-

flavantetrol unit.

The absolute configuration at the chiral centre C4, and thus

the interflavanoid linkage, was determined from CD spectro-

scopic data and suggested to be b-configuration (4R) owing to a

positive Cotton effect at 220e240 nm (Fig. 2B) [31,32]. The

systematic conformational analysis was performed by the

MOE software package with the Merck Molecular Force Field

MMFF94 [33]. The electronic circular dichroism (ECD) was

determined for the stable conformers obtained and the ge-

ometry was optimized at the B3LYP/6-31G(d) level using the

Gaussian09 program package [34]. The overall ECD spectra

were then generated according to the Boltzmann weighting of

each conformer. Comparison of the theoretical spectra with

the experimental spectra revealed a good agreement between

the calculated b-configuration (4R) and the measured ECD

curves (Fig. 2B), whereas the diastereomer a-configuration (4S)

showed the opposite results. Thus, based on the above evi-

dence, compound 1 was determined to be 3,5,13,14-

flavantetrol-(4b/8)-catechin and named rhuspartin.

3.2. Cytotoxicity assay

Although compounds 5, 8e10 showed high toxicity toward

HUVECs, compounds 1 and 7 were non-toxic even at the

highest dose (50 mg/ml). The determined 50% cytotoxicity

concentration (CC50) values of the tested compounds (in order)

were 5 (2.75 mg/ml), 10 (8.52 mg/ml), 8 (16.47 mg/ml), 9 (18.35 mg/

ml), 1 (215.65 mg/ml) and 7 (235.25 mg/ml).

3.3. Anti-apoptotic or cytoprotective potential of
compounds 1 and 7

The MTT assay showed the dose-dependent anti-apoptotic/

cytoprotective activities of compound 1 (Fig. 3A) and com-

pound 7 (Fig. 3B) against MGO-induced apoptosis in HUVECs.

Among the four doses tested, the best activity was observed

with the highest dose (25 mg/ml) for 7 (approximately 64%) and

1 (approximately 62%), nearing that of the AG (0.05 mM)

-treated cells that exhibited approximately 71% reversal of cell

apoptosis in relation to MGO toxicity. Tested safe doses above

25 mg/ml did not show significant enhancement in their ac-

tivities (data not shown).

3.4. Apoptotic signaling (caspase-3/7) assay

Further insight into the possible mechanism of HUVEC cyto-

protecting or anti-apoptotic activity of compounds 1 and 7

(optimal dose 25 mg/ml) was revealed through downregulation

of cellular caspase-3/7 by about 41% and 38%, respectively

Table 1 e 1H (700 MHz) and13C NMR (175 MHz) data (in
DMSO-d6) for compound 1.

no. 7

dC, mult. dH, mult (J in Hz)

Upper Unit

2 79.9, CH 5.21, brs

3 70.7, CH 4.35, m

4 30.8, CH 4.49, d (2.0)

5 156.6, C

6 107.8, CH 6.15, d (8.0)

7 128.8, CH 6.34, m

8 102.3, CH 6.33, d (8.0)

9 153.9, C

10 112.7, C

11 130.9, C

12 113.0, CH 6.69, s

13 145.1, C

14 144.5, C

15 115.7, CH 6.50, d (8.0)

16 115.8, CH 6.48, d (8.0)

OH-3 6.84, brs

OH-5 8.63e9.24, s

OH-13 8.63e9.24, s

OH-14 8.63e9.24, s

Lower Unit

2ʹ 80.5, CH 4.43, d (7.1)

3ʹ 66.4, CH 3.74, m

4ʹ 27.9, CH2 a. 2.64, dd (5.0, 16.1)

b. 2.44 dd (7.0, 16.1)

5ʹ 155.1, C

6ʹ 97.0, CH 5.91, s

7ʹ 155.3, C

8ʹ 104.4, C

9ʹ 153.6, C

10ʹ 99.5, C

11ʹ 130.4, C

12ʹ 114.4, CH 6.64, s

13ʹ 144.5, C

14ʹ 144.4, C

15ʹ 115.5, CH 6.71, d (8.0)

16ʹ 116.9, CH 6.28, d (8.0)

OH-3ʹ 4.92, d (4.2)

OH-5ʹ 8.63e9.24, s

OH-7ʹ 8.63e9.24, s

OH-13 8.63e9.24, s

OH-14 8.63e9.24, s
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compared to AG (approximately 26%) in relation to MGO alone

treated cells (Fig. 3C).

This is consistent with the multiple known mechanisms

that mediate the damaging effect of MGO on the cells

including oxidative stress and disruption of the functionality

of cellular proteins, which has negative impact on cell

signaling [35]. Similar therapeutic effects have been consid-

ered to underlie the effectiveness of a number of chemical

compounds which previously shown to protect endothelial

cells against carbonyl stress-induced cellular impairments

through both antioxidative mechanisms and the modulation

of apoptotic gene expression [36].

4. Conclusions

Ten flavonoids, including a new proanthocyanidin (1), were

isolated and identified from R. tripartita stem bark. The

Fig. 2 e A) Selected COSY ( ) and HMBC (H C) correlations for compound 1. B) Attribution of the absolute configuration

of compound (1) by comparing calculated CD spectra with experimental spectra.

Fig. 3 e MTT assay showing the dose-dependent anti-apoptotic/cytoprotective activity of R. tripartita derived compounds 1

(A) and 7 (B) against MGO-toxicity in cultured HUVEC cells. (C) Apoptosis assay showing inhibition of MGO-induced cellular

caspase-3/7 activation by R. tripartita derived compounds 1 and 7 in cultured HUVEC cells.
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structural determination was performed using extensive NMR

and HRESIMS analysis. Of the isolated compounds evaluated

for anti-apoptotic effects on cultured HUVECs, the new com-

pound 1 as well as 7 showed cytoprotective potential that

reversed theMGO-induced apoptosis through downregulation

of caspase3/7.

These data contribute toward the exploration of the

structural diversity and biological activity of flavonoids for the

prevention and treatment of diabetic cardiovascular diseases.

Furthermore, the identified new compound represents a

potentially valuable addition to the growing number of

proanthocyanidins being isolated from the genus Rhus.
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