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a b s t r a c t

Sargassum hemiphyllum is a common plant found on the coasts of Taiwan; it has been used

as an anti-inflammatory agent in traditional herbal medicine. This study aimed to evaluate

the anti-inflammatory effects of S. hemiphyllum sulfated polysaccharide (SHSP) using two

different mouse models. In both arachidonic acid-induced ear inflammatory gavage and

paint models, SHSP decreased ear swelling and erythema. In addition, SHSP decreased the

production of myeloperoxidase, nitric oxide, interleukin-1b (IL-1b), IL-6, and tumor necrosis

factor-a in a dose-dependent manner. Histological examination results showed that SHSP

reduced the area of neutrophilic infiltration in inflamed ears. The anti-inflammatory ac-

tivity of SHSP has already been demonstrated in vitro. In this study, SHSP extracted from

the same species of brown seaweed exhibited anti-inflammatory activity in both oral and

topical applications in vivo. Therefore, SHSP may play a role in the treatment of inflam-

matory diseases.

Copyright © 2014, Food and Drug Administration, Taiwan. Published by Elsevier Taiwan

1. Introduction

Inflammation is a physical response that protects against

injury, infection, and stress through multiple mechanisms.

Inflammation can be classified into two separate conditions,

namely, acute inflammation and chronic inflammation. Acute

inflammation is the initial response to stress that brings about

rapid and short-term immune responses [1]. Chronic inflam-

mation is initiated by an inappropriate or excessive acute

inflammatory immune response and is a symptom of various

pathological conditions [2]. It is well-known that inflamma-

tion can facilitate tumor progression [3], increase the risk of

atherosclerosis [4], cause lesions of Alzheimer's disease [5],

and promote insulin resistance and diabetes [6]. In such dis-

eases, inflammation is a primary cause, and therefore, treat-

ment of the inflammatory condition may be an effective

therapeutic approach.

Prior to the 1950s, seaweeds were used as traditional and

folk medicines [7]. However, biologically active compounds
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from brown seaweed were not discovered until the 1990s.

Previous studies have shown that extracts from the brown

seaweeds Dictyota dichotoma [8], Ecklonia cava [9,10], Fucus ves-

iculosus [11], Sargassum hemiphyllum [12,13], Sargassum vulgare

[14], and Eisenia bicyclis [15] exhibit anti-inflammatory activity

in vitro. Moreover, extracts from the brown seaweeds Lami-

naria saccharina, Laminaria digitata, Cladosiphon okamuranus,

Fucus evanescens, F. vesiculosus, Fucus serratus, Fucus distichus,

Fucus spiralis, Ascophyllum nodosum [16], Sargassum fulvellum,

Sargassum thunbergii [17], Sargassum wightii [18], Turbinaria

ornata [19], Lobophora variegata [20], E. cava [21], and Padina

tetrastromatica [22] also possess powerful anti-inflammatory

activities in vivo. In two separate studies that used different

extraction processes, E. cava elicited anti-inflammatory ac-

tivity (separately) in vitro and in vivo; however, there is no

evidence in previous reports indicating that single brown

seaweed extract has anti-inflammatory activity in both in vitro

and in vivo.

The brown seaweed S. hemiphyllum is commonly found in

east Asian coastlines and its extracts (obtained by boiling the

seaweed in water) are used as a traditional herbal anti-

inflammatory medicine. Our previous study demonstrated

that S. hemiphyllum sulfated polysaccharide (SHSP), which is

extracted using hot water, is central to the anti-inflammatory

activity of the plant. Inside the cell, SHSP causes decreased

cytosolic and nuclear expression of nuclear factor-kB (NF-kB)

p65, thereby inhibiting cytokine secretions of interleukin-1b

(IL-1b), IL-6, and tumor necrosis factor-a (TNF-a), and the nitric

oxide (NO) and messenger RNA expression of IL-b, inducible

NO synthase, and cyclooxygenase-2. It was observed in vitro

that the inhibitory effect of SHSP is through the NF-kB

signaling pathway [13]. However, because in vitro studies are

conducted in simulated organic conditions and are not in the

living organism, their success is limited. To verify these ob-

servations in vivo, we determined the anti-inflammatory ac-

tivity of SHSP using two arachidonic acid (AA)-induced ear

inflammation animal models.

2. Materials and methods

2.1. Preparation of SHSP

SHSP was extracted and isolated as described earlier [13]. In

brief, the dried S. hemiphyllum powder (100 g) was mixed with

5 L of distilled water and boiled at 100�C for 30 minutes. The

hot-water extract was centrifuged at 10,000g for 20 minutes

and the supernatant was lyophilized under reduced pressure.

To the lyophilized hot-water extract, 4 volumes of 95% ethanol

were added and the mixture was allowed to precipitate over-

night at 4�C. The precipitated polysaccharides were collected

by centrifugation and lyophilized. These lyophilized poly-

saccharides are the SHSP samples used in the experiments.

2.2. Chemical analysis

Sulfate content was determined according to the gelati-

nebarium method [23] using sodium sulfate (1 mg/mL) as

standard and after acid hydrolysis of the polysaccharides (6N

HCl, 100�C, 6 hours). Monosaccharide fractions of the

polysaccharide extract hydrolysates were separated by high-

performance anion-exchange chromatography (Dionex

BioLC, Sunnyvale, CA, USA) with an anion-exchange column

(CarboPac PA10, 4.6 � 250 mm; Dionex BioLC). The mono-

saccharide was analyzed at an isocratic NaOH concentration

of 18 mM at ambient temperature [24]. The fucose and sulfate

compositions of SHSP are 221.40 ± 0.42 mmol/g and

44.2% ± 3.6% (wt/wt), respectively.

2.3. Mice

Male BALB/c mice (8 weeks old, weight, 20e25 g) were pur-

chased from the National Taiwan University College of Med-

icine Laboratory Animal Center (Taipei, Taiwan). All animals

aged 12 weeks at the start of the experiment and were housed

in a normal, environmentally controlled animal room with

free access to pathogen-free feed and water ad libitum.

2.4. AA-induced ear inflammatory animal models

The flowchart of AA-induced ear inflammatory animal

models used in this study is shown in Fig. 1.

2.4.1. Gavage model
The mice were given 500 mL of SHSP at doses of 20 mg/kg,

40 mg/kg, and 80 mg/kg body weight (BW) for 5 consecutive

days (Day 1e5). Inflammation was induced on Day 5 by AA

administration (2 mg AA dissolved in 5 mL acetone), 3 hours

after SHSP gavage. AA was applied to both the anterior and

posterior surfaces of the right ear of mice. Mice in the control

group received the same volume of vehicle (500 mL) using the

same schedule as that followed for the SHSP group. There

were six mice in each group.

2.4.2. Painting model
Both the anterior and posterior surfaces of the right ear of

mice were painted with 500 mL of SHSP (doses: 1 mg/mL,

1.5 mg/mL, and 3 mg/mL). Inflammation was induced by AA

injection, 10 minutes after painting with SHSP. Mice in the

control group were painted with the same volume of vehicle

(500 mL) using the same schedule as that followed for the SHSP

group. There were six mice in each group.

2.5. Ear swelling assay

The ear swelling wasmeasured prior to the experiment and at

1-, 3-, 6-, and 24-hour time points after AA treatment. The ear

thickness was measured using a micrometer (Model 293-561;

Mitutoyo Digimatic, Veenendaal, The Netherlands) [25]. The

ear swelling% is calculated as:

½ðear thickness after AA induction

� ear thickness before AA inductionÞ=

2.6. Ear erythema assay

The ear erythema was measured prior to the experiment and

at 1-, 3-, 6-, and 24-hour time points after AA treatment. The

ear erythema was measured using the tissue viability (TiVi)

polarized light spectroscopy method (Tissue Viability Imager
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TiVi600; WheelsBridge AB, Link€oping, Sweden) to detect ear

red blood cell concentration (RBCconc). The measurement was

carried in a dark-room environment at an ambient tempera-

ture of 21e23�C and a relative humidity of 30e40%. The dis-

tance between the camera and ear surface was 25 cm [26]. The

ear erythema% is calculated as:

½ðear RBCconc after AA induction

� ear RBCconc before AA inductionÞ=
ðear RBCconc before AA inductionÞ� � 100%:

After the last measurement, the mice were sacrificed. The

ears were collected for myeloperoxidase (MPO), NO, inflam-

matory cytokines, and histology assays.

2.7. MPO and NO assays

Ears were homogenized in 80 mM sodium phosphate buffer

containing 0.5% hexadecyltrimethylammonium bromide for

45 seconds at 0�C, followed by centrifugation at 9000g for 20

minutes at 4�C. The supernatant was collected and stored at

�80�C until MPO analysis. The concentration of MPO was

determined using the InnoZyme Myeloperoxidase Activity

enzyme-linked immunosorbent assay (ELISA) kit (Calbio-

chem, Darmstadt, Germany). NO was determined using the

Griess method [27].

2.8. Cytokines assay

The ears were homogenized and dissolved in 1% Triton X-100

lysis buffer (250 mL; Sigma, Zwijndrecht, The Netherlands) and

enzyme inhibitor mix (Roche Diagnostics, Almere, The

Netherlands) in phosphate-buffered saline. The homogenates

were centrifuged at 13,500 rpm for 20 minutes at 4�C. The
supernatants were collected and stored at �80�C until cyto-

kine analysis. The concentration of IL-1b, IL-6, and TNF-a was

determined using ELISA kits (R&D Systems Inc., Minneapolis,

MN, USA) according to the manufacturer's instructions.

2.9. Histological assay

The ears were fixed with 10% (v/v) paraformaldehyde, dehy-

drated, and embedded in paraffin. For histological analysis, 4-

mm sections of fixed embedded tissues were cut on a micro-

tome (Model 2165 rotary microtome; Leica, Nußloch, Ger-

many). The sections were then placed on glass slides,

Male BALB/c mice
(8 wks old)

Male BALB/c mice
(12 wks old)

Housing in a controlled animal room

Gavage model Painting model

Control group SHSP group Control group SHSP group

Feeding water 
for 5 d

Feeding SHSP 
for 5 d

Painting water Painting SHSP 

Inducing inflammation 
on Day 5, 3 h after feeding

Inducing inflammation, 
10 min after painting

Ear swelling and erythema
assay performed in the living animals

MPO, NO, cytokines, and 
histological assay after killing the mice  

Fig. 1 e Flowchart of arachidonic acid (AA)-induced ear inflammatory animal models. MPO ¼ myeloperoxidase; NO ¼ nitric

oxide; SHSP ¼ Sargassum hemiphyllum sulfated polysaccharide.
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deparaffinized, and sequentially stained with hematoxylin

and eosin (Richard-Allan Scientific, Kalamazoo, MI, USA).

2.10. Statistical analysis

The data were presented as mean ± standard deviation of

three determinations. Significant between-group differences

were determined by analysis of variance, and p < 0.05 was

considered as statistically significant.

3. Results and discussion

In traditional herbal medicine formulations, both oral and

topical applications are common. To investigate differences

between these two modes of application, oral gavage and

topical paint models were used; in addition, we also deter-

mined whether SHSP is effective as both oral and topical ap-

plications using these two models.

3.1. Effect of SHSP on AA-induced ear swelling

The AA metabolism pathway is one of the main mechanisms

for the induction of inflammation. Therefore, AA was used to

initiate inflammation in mouse ears. For the gavage model,

SHSP was orally administered for 5 days. One hour after AA-

induced inflammation, no significant difference between

mice that received SHSP and the control group was noted.

However, after 3 hours, treatment with SHSP administered at

a dose of 80 mg/kg BW significantly inhibited ear swelling

from 68.64% ± 5.65% (control group) to 40.64% ± 6.32%. In the

majority of tested groups, inhibition of ear swelling was

measured at the 6-hour time point. After 6 hours, SHSP

administered at doses of 20 mg/kg, 40 mg/kg, and 80 mg/kg

BW inhibited ear swelling from53.03± 7.21% (control group) to

25.35 ± 6.37%, 24.52 ± 8.94%, and 22.72 ± 5.65%, respectively

(Fig. 2). This result complied with the test results obtained

usingmethanol extracts of Sargassum swartzii administered at

doses of 175 mg/kg and 350 mg/kg BW [28] and water-soluble

crude polysaccharide of T. ornata administered orally at a dose

of 2.5e20 mg/kg BW [19], which showed inhibition of paw

edema in carrageenan-induced rats.

To investigate the effects of topical SHSP on epidermis,

SHSP was painted on the right ear 10 minutes after the

administration of AA. Compared with the control group mice,

significant inhibition of ear swelling was observed after 3

hours. At this time after AA-induced inflammation, 1 mg/mL,

1.5 mg/mL, and 3 mg/mL of SHSP inhibited ear swelling in a

dose-dependent manner from 73.56 ± 5.99% (control group) to

46.59 ± 11.67%, 41.78 ± 9.97%, and 29.16 ± 7.12%, respectively

(Fig. 3). In further experiments, extracts of S. thunbergii, S.

fulvellum [17], and Turbinaria conoides [29], whichwere obtained

from boiling water, also inhibited ear edema and inflamma-

tion. The biological properties of these brown seaweed water

extracts are quite similar to those of SHSP. These data, and

those of previous studies, suggest that extraction by boiling in

water effectively isolates an anti-inflammatory substance

from S. hemiphyllum, and that SHSP may be the key active

ingredient.

3.2. Effect of SHSP on AA-induced ear erythema

Erythema is one of the major visible inflammatory symptoms

on skin, which is influenced by the regional blood flow rate,

the concentration of RBC, and the thickness and pigmentation

of skin. The clinical symptoms of skin erythema are usually

analyzed subjectively with the naked eye. However, when

clinical symptoms need to be graded (quantified), methods of

skin reflectance spectrophotometry [30], erythemameter, and

laser Doppler flow meter [31] have been used. These methods

are noninvasive and touch free and can be used to measure

erythema in living animals without physical interference. In

this study, we used TiVi polarized light spectroscopy to

investigate the effect of SHSP on ear erythema.
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Fig. 2 e Effect of Sargassum hemiphyllum sulfated

polysaccharide (SHSP) on arachidonic acid-induced ear

swelling in the gavage model. Vehicle (control), 20 mg/kg,

40 mg/kg, and 80 mg/kg body weight (BW) of SHSP were

administered orally for 5 constitutive days. Results are

shown as mean ± standard deviation (n ¼ 6). *p < 0.05

compared with the control.
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Fig. 3 e Effect of Sargassum hemiphyllum sulfated

polysaccharide (SHSP) on arachidonic acid (AA)-induced

ear swelling in the painting model. Vehicle (control), 1 mg/

mL, 1.5 mg/mL, and 3 mg/mL of SHSP were painted after

the application of AA. Results are shown as

mean ± standard deviation (n¼ 6). *p < 0.05 comparedwith

control.
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In the gavage model, SHSP administered at doses of 40

and 80 mg/kg BW inhibited erythema from 76.81 ± 4.31%

(control group) to 61.49 ± 3.83% and 47.64 ± 6.94%, respec-

tively, at the 3-hour time point. At the 6-hour time point,

SHSP administered at doses of 40 mg/kg and 80 mg/kg BW

also inhibited erythema from 69.35 ± 9.36% (control group) to

61.67 ± 5.84% and 51.52 ± 8.16%, respectively. However, no

inhibition of erythema was observed when SHSP was

administered at the dose of 20 mg/kg BW (Fig. 4). In the paint

model, 3 mg/mL of SHSP inhibited erythema from

73.67 ± 5.35% (control group) to 63.81 ± 2.66% at the 3-hour

time point, and 1.5 mg/mL of SHSP showed slight inhibition

at the 6-hour time point; however, 1 mg/mL of SHSP had no

effect on erythema (Fig. 5).

Some types of inflammatory tissue injury are mediated by

free radicals. These free radicals injure cells and tissues

directly by causing oxidative degradation of essential cellular

components and by exacerbating inflammation [32]. Antioxi-

dants, such as sulfated polysaccharides from brown seaweed,

protect against oxidant-mediated inflammation by scav-

enging free radicals. Indeed, the anti-inflammatory effect of

sulfated polysaccharide is improved with the degree of sul-

fation [33]. Our previous study indicated that S. hemiphyllum

contains compounds with potent antioxidant activity [34] and

high sulfate content [13]. Thus, it was suggested that the effect

of SHSP on animal models might be due to the presence of

such compounds with high antioxidative activity and sulfate

content.

3.3. Effect of SHSP on inflammatory MPO, NO, and
cytokine levels in ears

The neutrophil leukocyte marker MPO is known to indicate

chemotaxis of neutrophil leukocytes in inflamed tissues [35].

Elevated MPO release in the inflammation site is correlated

with NO, which is derived from MPO [36]. Therefore, we

analyzed the effect of SHSP on MPO and NO production. In

the gavage model, MPO and NO were present in AA-induced

inflamed tissues at levels of 34.22 ± 3.55 ng/mL and

29.35 ± 2.97 mM, respectively. Among mice treated with an

SHSP dose of 80 mg/kg BW, MPO and NO levels decreased to

20.63 ± 2.49 ng/mL and 18.42 ± 3.38 mM, respectively.

Treatment with SHSP at doses of 40 mg/kg and 80 mg/kg BW

was more effective than at a dose of 20 mg/kg BW in causing

inhibition of MPO and NO production. Moreover, SHSP

showed an inhibitory effect on these molecules in the paint

model. We also evaluated the production of the proin-

flammatory cytokines IL-1, IL-6, and TNF-a in inflamed ears.

These data also demonstrate that SHSP inhibits IL-1, IL-6,

and TNF-a production in both gavage and paint models

(Table 1). The results comply with those from previous

studies in which C. okamuranus ameliorated inflammation

by inhibiting MPO, IL-4, IL-6, and IL-10 [37]. Therefore, the

anti-inflammatory activity of SHSP can be attributed to

suppression of the release of proinflammatory cytokines,

low production of MPO and NO, and maybe inhibition of

leukocyte influx [38].

3.4. Effect of SHSP on histological changes in ears

In the inflammatory process, neutrophils are the first type

of leukocytes to infiltrate inflammatory sites, thereby the

most common histological feature of inflammation [39].

Thus, we conducted a histological evaluation of AA-induced

inflammatory neutrophilic infiltration (Fig. 6A). After oral

administration of SHSP at a dose of 80 mg/kg BW or topical

administration by painting with 3 mg/mL SHSP, neutro-

philic infiltration was clearly decreased (Fig. 6B and C).

Importantly, these histological data correspond with the

observed doseeresponse relationship to ear swelling,
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Fig. 4 e Effect of Sargassum hemiphyllum sulfated

polysaccharide (SHSP) on arachidonic acid-induced ear

erythema in the gavage model. Vehicle (control), 20 mg/kg,

40 mg/kg, and 80 mg/kg body weight (BW) of SHSP were

administered orally for 5 constitutive days. Results are

shown as mean ± standard deviation (n ¼ 6). *p < 0.05

compared with control.

**
*

0

20

40

60

80

100

1 3 6 24

Er
yt

he
m

a 
(%

) i
n 

th
e 

pa
in

tin
g 

m
od

el

Time (h)

Control
1 mg/mL
1.5 mg/mL
3 mg/mL

Fig. 5 e Effect of Sargassum hemiphyllum sulfated

polysaccharide (SHSP) on arachidonic acid (AA)-induced

ear erythema in the painting model. Vehicle (control),

1 mg/mL, 1.5 mg/mL, and 3 mg/mL of SHSP were painted

after the application of AA. Results are shown as

mean ± standard deviation (n¼ 6). *p < 0.05 compared with

control.
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erythema, and measurements of MPO, NO, and proin-

flammatory cytokines.

In conclusion, SHSP is the major anti-inflammatory agent

present in S. hemiphyllum preparations, and it acts by

suppressing the production of inflammatory mediators. To

our knowledge, this is the first study to demonstrate that

SHSP, obtained from a brown seaweed using a single extrac-

tion process, has anti-inflammatory activity in an animal

Table 1 e Effect of SHSP on AA-induced cytokine production in the ear.

Gavage model Painting model

Control 20 40 80 Control 1 1.5 3

mg/kg BW mg/mL

MPO (ng/mL) 34.22 ± 3.55 32.40 ± 4.37 22.34 ± 4.16* 20.63 ± 2.49* 39.14 ± 3.14 36.84 ± 2.58 22.76 ± 1.94* 18.76 ± 2.14*

NO (mM) 29.35 ± 2.97 29.11 ± 3.41 20.58 ± 3.71* 18.42 ± 3.38* 30.13 ± 1.78 27.12 ± 2.56 19.94 ± 3.62* 16.86 ± 3.23*

IL-1b (ng/mL) 5.17 ± 0.23 5.72 ± 1.29 5.15 ± 1.01 3.21 ± 0.84* 5.68 ± 0.88 5.41 ± 0.71 3.21 ± 0.84* 2.01 ± 0.44*

IL-6 (ng/mL) 0.92 ± 0.04 0.84 ± 0.10 0.62 ± 0.09* 0.60 ± 0.10* 0.95 ± 0.03 0.82 ± 0.19 0.85 ± 0.11 0.71 ± 0.02*

TNF-a (ng/mL) 0.22 ± 0.04 0.21 ± 0.01 0.22 ± 0.03 0.11 ± 0.05* 0.25 ± 0.02 0.24 ± 0.05 0.22 ± 0.04 0.23 ± 0.06

Results are shown as mean ± standard deviation (n ¼ 6).

*p < 0.05 compared with control.

AA ¼ arachidonic acid; BW ¼ body weight; IL ¼ interleukin; MPO ¼myeloperoxidase; NO ¼ nitric oxide; SHSP ¼ Sargassum hemiphyllum sulfated

polysaccharide; TNF-a ¼ tumor necrosis factor-a.

Fig. 6 e Effect of Sargassum hemiphyllum sulfated polysaccharide (SHSP) on histological changes as a result of arachidonic

acid-induced inflammation. (A) Control, (B) 80 mg/kg body weight of SHSP in the gavage model, and (C) 3 mg/mL of SHSP in

the painting model. Sections of the ears were stained by hematoxylin and eosin staining (200£). The arrows indicate

neutrophilic infiltration.
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model and is effective in both oral and topical applications.

Hence, SHSP may have promise in the treatment of inflam-

matory disease.
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