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a b s t r a c t

The recognition, control, and monitoring of herbal medicinal materials is a crucial work

and challenge in the pharmaceutical industry. Consequently, the development of a rapid

and accurate inspectionmethod andmodel is an important goal and job. The rawmaterials

of a variety of herbal medicines were measured using nondestructive near-infrared spec-

troscopy with soft independent modeling of class analogy to build up the classification

model. The adulterated samples could be eliminated by the analysis of the model, and

identification rates were demonstrated in the range of 98e100%. The method could be

applied not only to the pharmaceutical industry but also to the food industry. Food ma-

terials can be measured with the inspection model for effective identification and deter-

mination of adulteration.

Copyright ª 2013, Food and Drug Administration, Taiwan. Published by Elsevier Taiwan

LLC.

1. Introduction

The integration of Chinese herbal medicines into modern

medical treatments has assumed a more prominent profile in

recent years [1]. Without purification to single out specific

ingredients, quality control of these raw materials of phar-

maceutical value is crucial and yet remains a challenge,

especially when accurate determination of functional in-

gredients in raw materials often requires extensive analytical

tasks. In fact, many Chinese herbal medicines are now pre-

served in dry powder form for ease of storage and distribution.

The herbs are not easily differentiated visually for materials

still in driedwhole formwithout expert training; identification

of the specific varieties in powder form is even more
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challenging. There is a dire need to develop a rapid and ac-

curate detection method for these herbal materials in order to

foster their application in modern medicine.

It is well recognized that the quality of herbal pharma-

ceuticals can vary considerably because of the inherent vari-

ability caused by sourcing from regions with different climatic

and soil conditions. Adulteration problems are also likely to be

encountered as economic incentives continue to grow for

herbal materials. To date, sensory and chemical analyses are

often required for the inspection and/or identification of

herbal medicines. With morphological or histological tech-

niques to differentiate herbal materials becoming impossible

in the powder form, analytical approaches such as high-

performance liquid chromatography [2], gas chromatogra-

phyemass spectrometry [3], thin layer chromatography [4],

and capillary electrophoresis [5] are often used. However, it is

impossible to apply these methods for online inspection

because of the complicated sample preparation procedures

and long analysis times required. Moreover, these sample-

destructive methods are poorly suited for inspection because

they inevitably damage and consume the sample materials.

Nondestructive inspection methods such as optical [6,7],

ultrasonic [8], and electromagnetic [9] techniques that make

online inspection and automation possible are becoming

popular with practical applications in a variety of areas,

especially in the pharmaceutical [10,11], food [12], agricultural

[13], chemical [14], and biobased industries [15]. Because

traditional Chinesemedicines come from a variety of different

plant parts, near-infrared spectroscopic analysis is well suited

to the analysis of the highly varied chemical compositions of

the herbal materials [16,17]. The above inspections with high-

performance classification methods would be needed and

appreciated. The soft independent modeling of class analogy

(SIMCA) method provides a useful classification of high-

dimensional variations and incorporates principal compo-

nent analysis (PCA) to reduce the dimensions of the spectra

[18,19]. A SIMCAmodel consists of a collection of PCAmodels,

and the data sets are independent. In comparison with the

nonlinear modeling method, the calculation speed of SIMCA

with PCA can be increased by calculating the covariance

matrices and the indices. Therefore, the SIMCA model with

PCA was selected for the development of the offline calibra-

tion model.

In the previous study [16], a robust inspection model using

near-infrared spectroscopy with artificial neural network

(ANN) analysis was developed for the classification of herbal

materials. Although the results were excellent, developing the

calibration database was time-consuming, consequently

limiting the applicability of the model. In the present study, a

SIMCA [20,21] based on near-infrared spectroscopy was

developed to improve the calculation speed and retain the

capacity for accurate classification of the herbal medicine

materials.

2. Materials and methods

This study used 48 different raw herbal medicines that were

provided by Sun Ten Pharmaceutical Co., Ltd. (New Taipei

City, Taiwan). In the form of dry powder. For each of the 48

medicines, there were 30 individual samples, producing a

total of 1440 spectral measurements for this study. Each

sample was loaded into a 20-mL vial such that the volume of

the vial was approximately 2/3 full with a powder depth of at

least 2 cm, in order to prevent light transmission during the

spectral reflectance measurement.

This study included only raw unprocessed dry herbal

sample types originating primarily from plant leaves, stems,

roots, flowers, fruits, seeds, and nuts; other possible herbal

ingredients that occur naturally in nonsolid forms, such as

liquids or gels, were not included. All samples were ground to

the crude powder form for the near-infrared spectroscopic

inspection.

2.1. Sample preparation and grouping

Table 1 lists the pool of 48 medicinal herbs used in this study.

The stability of the SIMCAmodel was evaluated using Group 1

data, which consisted of three nonoverlapping calibration

subgroups (A, C, E) paired with three prediction subgroups (B,

D, F), respectively. Thirty different kinds of herbs were

randomly selected (from among the 48 available) and sepa-

rated into the three independent calibration subgroups. The

selection process also assigned 15 herbs to each prediction

subgroup, allowing for some overlap between the prediction

subgroups and also between nonpaired calibration and pre-

diction subgroups. There was no overlap between A and B,

between C and D, or between E and F. The selection process

was as follows: (1) starting with the pool of 48 available herbs,

subgroup A (10 herbs) was selected, leaving 38 herbs available

in the pool; (2) both subgroups B (15) and C (10) were each

selected randomly from the pool of 38 and then the members

of subgroup C were eliminated, leaving 28 in the pool; (3) both

subgroups D (15) and E (10) were each selected randomly from

the pool of 28 and then the members of subgroup E were

eliminated, leaving 18 in the pool; (4) finally, subgroup F (15)

was selected from the pool of 18.

The above data in Group 1 was used to test SIMCA models

using different (independent) sets of spectral data. For Group

2, the pool of all 48 herbs was separated into two subgroups:

calibration subgroup G containing 30 herbs and prediction

subgroup H containing 18 herbs. These Group 2 data were

used to test SIMCA models using a larger set of calibration

data; by design, the herbs in subgroup G (calibration set of 30)

include all the herbs in Group 1 calibration subgroups A (10)

and C (10) but none of those in subgroup E (10).

Group 1

� Subgroup A contained 10 herbs: Angelicae Sinensis Radix,

Artemisia scoparia Waldst et Kit., Citrus Sinensis Exo-

carpium, Clematidis Radix, Ligustici Rhizoma, Magnoliae

Flos, Nelumbinis Folum, Platycodi Radix, Polyporus, and

Rhei Rhizoma.

� Subgroup B contained 15 herbs: Atractylodis Rhizoma,

Bupleuri Radix, Cinnamomi Ramulus, Ephedrae Herba,

Evodiae Fructus, Hoelen, Paeoniae Lactiflorae Radix,

Paeoniae Veitchii Radix, Perillae Folium, Pinelliae Tuber,

Puerriae Radix, Salviae Miltiorrhizae Radix, Sapo-

shinkoviae Radix, Scutellariae Radix, and Zingiberis Sic-

catum Rhizoma.
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� Subgroup C contained 10 herbs: Atractylodis Rhizoma,

Ephedrae Herba, Evodiae Fructus, Hoelen, Paeoniae Lac-

tiflorae Radix, Paeoniae Veitchii Radix, Pinelliae Tuber,

Salivae Miltiorrhizae Radix, Scutellariae Radix, and Zin-

giberis Siccatum Rhizoma.

� Subgroup D contained 15 herbs: Achyranthis Radix,

Amomi Semen, Angelicae Sinensis Radix, Artemisia sco-

paria Waldst et Kit., Citrus Sinensis Exocarpium, Citrus

Undeveloped Exocarpium, Clematidis Radix, Curcumae

Radix, Cyperus rotundus, Ligustici Rhizoma, Magnoliae

Flos, Nelumbinis Folum, Platycodi Radix, Polyporus, and

Rhei Rhizoma.

� Subgroup E contained 10 herbs: Astragalus mem-

branaceus Bqe., Cinnamomum japonicum Sieb., Coix

lachrymal-jobi L., Dioscorea opposite Thumb., Glycyr-

rhiza uralensis FISCH., Houttuynia cordata Thumb., L. var.

Table 1 e The list of 48 herbal medicines and their affiliated subgroups (AwH).

Herbal medicines Group 1 Group 2

Cal. Prd. Cal. Prd. Cal. Prd. Cal. Prd.

A (10) B (15) C (10) D (15) E (10) F (15) G (30) H (18)

Achyranthis Radix U U

Amomi Semen U U

Angelicae Sinensis Radix U U U

Artemisia scoparia Waldst et Kit. U U U

Astragalus membranaceus Bqe. U U

Atractylodis Rhizoma U U U

Bupleuri Radix U U

Cinnamomi Ramulus U U

Cinnamomum japonicum Sieb. U U

Citrus Sinensis Exocarpium U U U

Citrus Undeveloped Exocarpium U U

Clematidis Radix U U U U

Coix lacryma-jobi L. U U

Curcumae Radix U U

Cyperus rotundus U U

Dioscorea opposita Thumb. U U

Dolichos lablab L U

Ephedrae Herba U U U

Evodiae Fructus U U U

Foeniculum vulgare U U

Forsythia suspensa Vahl U U

Glycyrrhiza uralensis FISCH. U U

Hoelen U U U U

Houttuynia cordata Thumb. U U

L. var. orientale SAMUELS. U U

Ligustici Rhizoma U U U

Lithospermum Officinale Root U U

Magnolia officinalis U U

Magnoliae Flos U U U U

Morus alba U U

Nelumbinis Folium U U U U

Paeonia suffruticosa Andr U U

Paeoniae Lactiflorae Radix U U U U

Paeoniae Veitchii Radix U U U U

Perillae Folium U U

Pinelliae Tuber U U U

Platycodi Radix U U U

Polyporus U U U U

Prunus armeniaca U U

Puerariae Radix U U

Rhei Rhizoma U U U U

Salvae Miltiorrhizae Radix U U U U

Saposhinkoviae Radix U U

Saussureae Radix U

Scrophularia ningpoensis HEMSL. U

Scutellariae Radix U U U U

Sophora flavescens AIT U U

Zingiberis Siccatum Rhizoma U U U

Cal. ¼ calibration set; Prd. ¼ prediction set.
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orientale SAMUELS., Lithospermum Officinale Root,

Magnolia officinalis, and Paeonia suffruticosa Andr.

� Subgroup F contained 15 herbs: Clematidis Radix, Foe-

niculum vulgare, Forsythia suspensa Vahl, Hoelen, Mag-

noliae Flos, Morus alba, Nelumbinis Folium, Paeoniae

Lactiflorae Radix, Paeoniae Veitchii Radix, Polyporus,

Prunus armeniaca, Salivae Miltiorrhizae Radix, Rhei Rhi-

zoma, Scutellariae Radix, and Sophora flavescens AIT.

Group 2

� Subgroup G contained 30 herbs: Achyranthis Radix,

Amomi Semen, Anglicae Sinensis Radix, Artemisia sco-

paria Waldst et Kit., Atractylodis Rhizoma, Bupleuri

Radix, Cinnamomi Ramulus, Citrus Sinensis Exocarpium,

Citrus Undeveloped Exocarpium, Clematidis Radix, Cur-

cumae Radix, Cyperus rotundus, Ephedrae Herba, Evo-

diae Fructus, Hoelen, Ligustici Rhizoma, Magnoliae Flos,

Nelumbinis Folum, Paeoniae Lactiflorae Radix, Paeonia

Veitchii Radix, Perillae Folium, Pinelliae Tuber, Platycodi

Radix, Polyporus, Puerariae Radix, Rhei Rhizoma, Sailvae

Miltiorrhizae Radix, Saposhinkoviae Radix, Scutellariae

Radix, and Zingiberis Siccatum Rhizoma.

� Subgroup H contained 18 herbs: Astragalus mem-

branaceus Bqe., Cinnamomum japonicum Sieb., Coix

lachrymal-jobi L., Dioscorea opposite Thumb., Dolichos

lablab L., Foeniculum vulgare, Forsythia suspensa Vahl,

Glycyrrhiza uralensis FISCH., Houttuynia cordata Thumb.,

L. var. orientale SAMUELS., Lithospermum Officinale

Root, Magnolia officinalis, Morus alba, Paeonia suf-

fruticosa Andr, Prunus armeniaca, Saussureae Radix,

Scrophularia ningpoensis HEMSL., and Sophora fla-

vescens AIT.

2.2. Apparatus and experiments

The spectra of the herb samples were measured on a FOSS

NIRSystems instrument Model 6500 NIR reflectance spec-

trometer (FOSS NIRSystems, Inc., Laurel, MD, USA) configured

with a rapid content analyzer module and a tungsten halogen

lamp as the light source, and using the VISION 3.0 software

(FOSS NIRSystems, Inc.) for system control and data acquisi-

tion. The sampleswere scanned at 2-nm intervals in the range

of 400e2498 nm, encompassing the visible and near-infrared

wavelengths. Silicon detectors were used below 1100 nm,

followed by lead sulfide detectors above 1100 nm. Spectral

analysis and the development of SIMCA models were carried

out using Matlab 7.2 (The Mathworks, Inc., Natick, MA, USA)

with PLS Toolbox 5.0 (Eigenvector Research, Inc., Wenatchee,

WA, USA).

2.3. Data pretreatment

For all 1440 sample spectra, the standard normalized variate

transformation [22] was applied to reduce spectral variation.

For the Group 1 calibration subgroups (A, C, E), the 300 sample

spectra in each subgroup were separated into two setsda

calibration set of 200 spectra and a validation set of 100

spectradusing the KennardeStone algorithm [23]. For Group

2, calibration subgroup G contained 900 sample spectra that

were separated into a set of 600 calibration set samples and

300 validation set samples. SIMCA models were developed

using the calibration data sets and then used to predict the

spectral samples in the prediction sets.

2.4. Principal component analysis

PCA [20] is a useful chemometric analysis tool for spectral data

compression and information extraction that allows the most

important information contained in the spectra to be

described using a small number of principal components (PC).

In this study,M is a near-infrared spectral data matrix with m

rows (m samples) and n columns (n wavelengths). PCA de-

composesM as the sum of series combinations of ti and pi. The

ti and pi pairs are ordered (i) by the amount of variance

captured. The scores (ti vectors) contain information on how

the samples relate to each other. The loadings ( pi vectors)

contain information on how the variables relate to each other.

The PCA model is truncated after the k components and

remaining variance factors are consolidated into a residual

matrix E:

M ¼ t1p
T
1 þ t2p

T
2 þ/þ tkp

T
k þ E (1)

Mathematically, PCA relies on an eigenvector decomposi-

tion of the covariance matrix of the process variables. For a

given data matrix M with m rows and n columns, the covari-

ance matrix of M is defined as:

covðMÞ ¼ MTM
m� 1

(2)

The columns of M have been “mean-centered” by sub-

tracting the original mean of each column. In the PCA

decomposition, the pi vectors are eigenvectors of the covari-

ance matrix. For each pi,:

covðMÞpi ¼ lipi (3)

li is the eigenvalue associated with the eigenvector pi. The ti
forms an orthogonal set (ti

Ttj ¼ 0, for i s j ), whereas pi is

orthonormal ( pi
Tpj ¼ 0 for is j; pi

Tpj ¼ 1, for i ¼ j ). Note that for

M and any ti, pi pair,

Mpi ¼ ti (4)

Here, ti is the projection of M onto pi. The ti and pi pairs are

arranged in descending order according to the associated,

which is ameasure of the amount of variance described by the

ti and pi pair. The t1, p1 pair captures the greatest amount of

variation in the data that can be captured with a linear factor;

and then each subsequent pair captures the greatest possible

amount of variance remaining after subtracting tipT
i from M.

2.5. Monitoring indices associated with PCA models

Hotelling’s T2 and the Q residual [24] are two indices

commonly used to evaluate new data using a previously

developed PCA model. Hotelling’s T2 can be viewed as the

distance from a sample’s projection into the k-dimensional

subspace to the centroid of the subspace. The Q residual is the

distance between a sample point in n-space and its projection

in the k-dimensional subspace of the model (as shown in

Fig. 1).
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2.5.1. Hotelling’s T2

Hotelling’s T2 statistic gives a measure of significant variation

of the process. It is the sum of normalized squared scores

divided by their variance:

T2 ¼ tTl�1t ¼
Xk

i¼1

t2i
li

(5)

where l e 1 is a diagonal matrix of the inverse of the k largest

eigenvalues li of covariance matrix cov(M) in descending

order, and ti is the ith score. The statistical thresholds for T2

can be calculated using the F distribution as follows:

T2
a ¼ kðm� 1Þ

ðm� kÞ Faðk;m� kÞ (6)

where T2
a is the threshold value with an a significance level of

confidence (95% in this case),m is the number of samples used

to build the PCA model, and k is the number of principal

components retained in the model. Faðk;m� kÞ is the a confi-

dence interval of the F distribution with k and (m e k) degrees

of freedom.

2.5.2. The Q residual
TheQ residual is ameasure of the variation of the data outside

of the principal components included in the PCA model. The

mismatch between measured and estimated sensor readings

results in the residual e, which forms the basis of the Q sta-

tistic, which is formulated as follows:

e ¼ x� tpT ¼ x
�
In � ppT

�
(7)

and

Q ¼ eTe ¼
Xn

j¼1

e2j (8)

where ej is the jth residual. The statistical thresholds for the Q

residual can be calculated as follows:

Qa ¼ q1

�
h0ca

ffiffiffiffiffiffiffi
2q2

p
q1

þ q2h0ðh0 � 1Þ
q21

þ 1

� 1
h0

(9)

where

qi ¼
Xn
j¼kþ1

lij; for i ¼ 1; 2; 3 (10)

and

h0 ¼ 1� 2q1q3
3q22

(11)

In Equation 10, ca is the standard normal deviate corre-

sponding to the upper (1e a) percentile. In Equation 11, k is the

number of principal components retained in the model and n

is the total number of principal components.

2.5.3. SIMCA
A soft independent method of class analogy (SIMCA) model

consists of a collection of PCAmodels, one for each class in the

data set. PCA with Hotelling’s T2 and Q residual is shown

graphically in Fig. 1. Each class can have a different number of

principal components; the number depends on the data in the

class.

Some discussion of the geometric interpretation of Q re-

sidual and Hotelling’s T2 is perhaps in order. As noted above, Q

residual is a measure of the variation of the data outside of the

principal components included in the PCAmodel. Hotelling’sT2

is a measure of the distance from the multivariate mean (the

intersection of the PCs in the figure) to the projection of the

sample onto the two principal components. Hotelling’s T2 limit

defines an ellipse on the plane within which the data normally

project. A samplewith a largeHotelling’s T2 value (but a smallQ

residual) is shown on the upper right-hand side of Fig. 1.

The nearest class to a sample is defined as the class model

that results in a minimum distance of the sample i to model j,

dij:

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQrÞ2 þ ðT2

r Þ2
q

(12)

with a reduced Q residual:

Qr ¼ Q
Q0:95

(13)

where Q0.95 is the 95% confidence interval for themodel under

consideration, and reduced Hotelling’s T2:

T2
r ¼

T2

T2
0:95

(14)

with a similarly defined T2
0.95. This distance measure gives

equal weight to distance in the model space (T2) and in the

residual space (Q). The use of reduced Q residual and T2 allows

a direct comparison of the values of specific samples on

different SIMCA submodels. Without the use of these reduced

statistics, each model’s T2 and Q residual values would be on

very different numerical scales and not easily comparable.

3. Results and discussion

The purpose of the experimental design (Fig. 2) in this study

was to allow for the comparison of the stability and perfor-

mance of multiple SIMCA models built on different

Fig. 1 e The concept of Hotelling’s T2 and Q residual under

the three-variable condition with their own principal

component distributions.

j o u rn a l o f f o o d a nd d r u g an a l y s i s 2 1 ( 2 0 1 3 ) 2 6 8e2 7 8272

http://dx.doi.org/10.1016/j.jfda.2013.07.008
http://dx.doi.org/10.1016/j.jfda.2013.07.008


independent combinations of medicinal herbs, and to deter-

mine the effectiveness and stability of a SIMCA model when

expanded to include a larger set of samples. Therefore,

different calibration, validation, and prediction sets and pre-

treatments were designed to be operated.

3.1. Step 1. Results for three independent calibration
subgroups

The average spectra of all the herbs, organized by subgroups,

are shown in Fig. 3, and are not easily separated by the naked

eye. The large variations in the visible range (400e700 nm)

were attributable to the basic colors of the medicines. In

Group 1, the calibration subgroups A, C, and E were paired to

prediction subgroups B, D, and F, respectively, with no overlap

in membership between the paired calibration and prediction

subsets. The calibration and prediction subgroups were

completely independent combinations. For each of the A, C,

and E calibration subgroups, the calibration and validation

sets were selected (using the KennardeStone algorithm) to

perform the first test of the SIMCA models.

In calibration subgroups A, C, and E of Group 1, the number

of selected principal components was based on the cumula-

tive variance (%) of each herb, as shown in Table 2. Conse-

quently, the number of principal components (PCs) in the

calibration set differed for different PCA submodels. There

were two to five PCs for subgroup A, two to four PCs for sub-

group C, and three to four PCs for subgroup E. The larger range

for subgroup A indicated a larger variance between the sam-

ples in set A.

For subgroups A, C, and E, three to four PCs describedmore

than 95% of the cumulative variance presented by most of the

samples. In subgroup A, there were three medi-

cinesdArtemisia scoparia Walodst et Kit., Clemaridis Radix, and

Ligustici Rhizomadthat were well described by only two PCs,

and only onedPlyporusdthat needed five PCs. In set C, only

one sampledHoelendneeded only two PCs to account for

95.17% of the cumulative variance, whereas all other samples

in the subgroup requiredmore PCs. All the herbs in subgroup E

needed three to four PCs to explain above 95% cumulative

variance.

The first step in the development of SIMCA models was to

calculate the sub-PCA model of a single medicine, and then,

for the remaining samples, the principal component distri-

bution would be calculated using the sub-PCA model in the

principal component space. The differentiation between

herbs could then be determined by Hotelling’s T2 and Q re-

sidual values to implement classification and identification.

Fig. 4 shows the samples of the 10 herbs (A01 through A10) in

subgroup A as distributed by their Hotelling’s T2 and Q resid-

ual values calculated using the sub-PCA model for the 20

calibration set samples of herb A01 (Angelicae Sinensis Radix).

The A01 samples appear nearest to the origin coordinates (0, 0)

and can be clearly differentiated by Hotelling’s T2 and Q re-

sidual values <1, as shown by the expanded view in the upper

left inset box.

To complete the SIMCA model for subgroup A, a sub-PCA

model was calculated for each set of the 20 calibration set

samples for the remaining nine herbs (A02 through A10) in

subgroup A. These models, based on the calibration set for

subgroup A, were used to calculate Hotelling’s T2 and Q re-

sidual values for the validation set samples for subgroup A,

and then also for the samples in prediction subgroup B. The

samples could then be assigned a binary identification of

either 0 (belonging to subgroup A, based on Hotelling’s T2 and

Q residual values less than 1) or 1 (not belonging to subgroup

A, based on Hotelling’s T2 and Q residual values greater than

1). Fig. 5A and B show the identification of the subgroup A

validation set samples (which belong to the subgroup A

database) and of the prediction subgroup B samples (which do

not belong to the subgroup A database), respectively.

The SIMCA model also calculates the nearest class of

subgroup A for any given sample. Fig. 5C shows that the

subgroup A validation set matches the classes defined by the

subgroup A calibration set. For the samples in subgroup B that

do not match the classes defined by the subgroup A calibra-

tion set, Fig. 5D shows the nearest class (defined within sub-

group A) that was calculated for each of the “unknown”

subgroup B samples, based on the mean values of Hotelling’s

T2 or Q residual or both.

Fig. 5 illustrates the information that can be provided by

the two-stage SIMCA analysis for unknown samples. The first

stage identifies whether an unknown sample belongs to the

set of known samples as defined by the calibration set, which

is useful for the authentication of an herbal sample. If an

unknown sample does belong to the calibration set, then the

second stage of analysis can then determine the specific

match in the calibration set for the unknown sample.

Table 3 shows the results for the Group 1 SIMCA models

when applied to identify whether an unknown sample be-

longs to the set of calibration samples on which the model

was built (application of the first-stage SIMCA analysis). The

subgroup-A SIMCA model correctly identified 100% of the 200

calibration set samples and 100% of the 100 validation set

samples of subgroup A as positive matches (belonging to

Fig. 2 e The pretreatments and the logical flow of different

calibration, validation, and prediction sets.
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subgroup A), and correctly identified 100% of the 450 samples

in prediction subgroup B as nonmatches. The subgroup-C

SIMCA model correctly identified 99% of the 200 subgroup C

calibration set samples and 98% of the 100 subgroup C vali-

dation set samples as positive matches, and 100% of the 450

samples in prediction subgroup D as nonmatches. The

subgroup-E SIMCA model correctly identified 100% of the 200

subgroup E calibration set samples and 99% of the 100 sub-

group E validation set samples as positive matches, and 100%

of the 450 samples in prediction subgroup F as nonmatches.

The calibration data sets in Group 1 consisted of three in-

dependent sets of 10 different Chinese medicinal herbs. The

Fig. 3 e (A) The spectra of the calibration sets A, C, E, and G, and (B) the spectra of the prediction sets B, D, F, and H.

j o u rn a l o f f o o d a nd d r u g an a l y s i s 2 1 ( 2 0 1 3 ) 2 6 8e2 7 8274

http://dx.doi.org/10.1016/j.jfda.2013.07.008
http://dx.doi.org/10.1016/j.jfda.2013.07.008


purpose of this experiment design was to test the stability of

the SIMCA modelsdthat is, whether different herbal medi-

cines could be recognized by using different combinations of

herbs on which the SIMCA models were built. The results

showed that the herbs could be identified rapidly and accu-

rately by the SIMCA models built on the different herb

combinations.

3.2. Step 2. Results of one extended group for the
practical application

Table 3 also shows the results for the Group 2 SIMCA model,

an extendedmodel built on the larger sample calibration set of

subgroup G based on 30 different herbs (600 samples in the

subgroup G calibration set). For the experimental design,

subgroup G included all of the samples from Group 1 sub-

groups A, B, C, and D, but none of the samples in subgroup E

and only 10 of the 30 samples in subgroup F. There was no

sample overlap between Group 2 subgroups G and H.

The subgroup-G SIMCA model correctly identified 99.5% of

the 600 subgroup G calibration set samples and 99% of the 300

subgroup G validation set samples as positive matches, and

correctly identified all subgroup H samples (540 samples

spanning 18 herb varieties) as nonmatches, to subgroup G.

Examining the samples by their Group 1 organization, the

extended subgroup-G SIMCA model correctly identified the

match or nonmatch status of 100%, 98%, and 100%, of the

samples in subgroups A, C, and E, respectively, and 98.67%,

100%, and 99.33% of the samples in subgroups B, D, and F,

respectively.

There were three misidentified samples in the calibration

set of subgroup G: Hoelen and Paeoniae Lactiflorae Radix from

subgroup C, and Puerariae Radix from subgroup B. The se-

lection of the number of principal components to use in

modeling each medicinal herb was a crucial step in SIMCA

model development. Too many principal components can

cause overfitting, whereas too few principal components

will inadequately describe the spectral characteristics of

any given group. In Group 2, 30 medicines were selected

Table 2 e The herbal membership principal components
and cumulative variance (%) of the calibration subgroups
A, C, E, and G.

Set Herbal name Principal
component

Cumulative
variance (%)

A Angelicae Sinensis Radix 3 96.07

Artemisia scoparia Waldst et Kit. 2 96.78

Citrus Sinensis Exocarpium 4 96.44

Clematidis Radix 2 96.96

Ligustici Rhizoma 2 96.26

Magnoliae Flos 3 96.45

Nelumbinis Folium 3 98.51

Platycodi Radix 4 97.39

Polyporus 5 97.54

Rhei Rhizoma 4 95.01

C Atractylodis Rhizoma 3 95.79

Ephedrae Herba 4 97.74

Evodiae Fructus 4 96.11

Hoelen 2 95.17

Paeoniae Lactiflorae Radix 4 95.76

Paeoniae Veitchii Radix 2 97.23

Pinelliae Tuber 4 97.77

Salvae Miltiorrhizae Radix 4 97.64

Scutellariae Radix 3 96.87

Zingiberis Siccatum Rhizoma 3 96.79

E Astragalus membranaceus Bqe. 3 95.07

Cinnamomum japonicum Sieb. 3 97.81

Coix lacryma-jobi L. 3 97.58

Dioscorea opposita Thumb. 4 95.74

Glycyrrhiza uralensis FISCH. 3 96.12

Houttuynia cordata Thumb. 3 96.91

L. var. orientale SAMUELS. 4 97.92

Lithospermum Officinale Root 4 96.75

Magnolia officinalis 4 95.41

Paeonia suffruticosa Andr 3 95.45

G Achyranthis Radix 3 95.32

Amomi Semen 3 98.74

Anglicae Sinensis Radix 3 96.07

Artemisia scoparia Waldst et Kit. 2 96.78

Atractylodis Rhizoma 3 95.79

Bupleuri Radix 4 97.05

Cinnamomi Ramulus 4 95.87

Citrus Sinensis Exocarpium 4 96.44

Citrus Undeveloped Exocarpium 4 96.64

Clematidis Radix 2 96.96

Curcumae Radix 3 96.24

Cyperus rotundus 3 98.25

Ephedrae Herba 4 97.74

Evodiae Fructus 4 96.11

Hoelen 2 95.17

Ligustici Rhizoma 2 96.26

Magnoliae Flos 3 96.45

Nelumbinis Folum 3 98.51

Paeoniae Lactiflorae Radix 4 95.76

Paeoniae Veitchii Radix 2 97.23

Perillae Folium 6 95.31

Pinelliae Tuber 4 97.77

Platycodi Radix 4 97.39

Polyporus 5 97.54

Puerariae Radix 2 95.82

Rhei Rhizoma 4 95.01

Salivae Miltiorrhizae Radix 4 97.64

Saposhinkoviae Radix 2 95.01

Scutellariae Radix 3 96.87

Zingiberis Siccatum Rhizoma 3 96.79

Fig. 4 e The distribution of Hotelling’s T2 and Q residual

values for the 10 sample herbs in subgroup A, according to

the sub-PCA model calculated for sample A01.

PCA [ principal component analysis.
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from the available pool of 48 to test the limitation of the

classification and the calculation speed of the SIMCA model,

including a variety of different plant partsdroots, stems,

leaves, whole plant, flowers, fruits, etc. Because the powder

forms in which herbal medicines are most commonly stored

prior to processing are even more difficult to visually

differentiate than dried roots, stems, leaves, etc., the

development of a rapid and accurate method for their

Fig. 5 e Results of using the SIMCA model built on subgroup A calibration set to (identify/classify) samples in subgroup A

validation set and in prediction subgroup B. A and B show the identification of the subgroup A validation set samples and of

the prediction subgroup B samples, respectively. C shows that the subgroup A validation set matches the classes defined by

the subgroup A calibration set. D shows the nearest class (defined within subgroup A) that was calculated for each of the

“unknown” subgroup B samples, based on the mean values of Hotelling’s T2 or Q residual or both. SIMCA [ soft

independent modeling of class analogy.

Table 3 e The SIMCA model identification rates for the calibration, validation, and prediction sample subsets.

Set Calibration Validation Set Prediction

Total
Sample

Misidentified
Sample

Correct
identified
rate (%)

Total
sample

Misidentified
sample

Correct
identified
rate (%)

Total
sample

Misidentified
sample

Correct
identified
rate (%)

A 200 0 100.00 100 0 100.00 B 450 0 100.00

C 200 2 99.00 100 2 98.00 D 450 0 100.00

E 200 0 100.00 100 1 99.00 F 450 0 100.00

G 600 3 99.50 300 3 99.00 A 100 0 100.00

B 450 6 98.67

C 100 2 98.00

D 450 0 100.00

E 100 0 100.00

F 450 3 99.33

H 540 0 100.00

SIMCA ¼ soft independent modeling of class analogy.
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classification and identification is becoming an increasingly

important and urgent need.

3.3. Comparisons and discussions

Using Hotelling’s T2 and Q residual values, this SIMCAmethod

effectively identified herbal matches and nonmatches relative

to the herbs in the database. For the herbs identified as non-

matches (outside of the database), Hotelling’s T2 and Q resid-

ual values could still be useful for general classification in

terms of resemblance to database members. Our previous

study [16] described the effective classification of medicinal

herbs implemented by using an ANN method; however, this

ANN method needed longer calculation times that were not

practical for online inspection applications. As the numbers of

samples and herbal varieties increased, both the ANN calcu-

lation loading and required calculation times increased

significantly. By contrast, the SIMCAmethod described in this

study can be used to classify or identify medicinal herbs with

greater flexibility in accommodating larger numbers of sam-

ple types and with shorter calculation times when compared

to the ANN model.

The SIMCA method can be applied to identify medicinal

herb samples that fall outside of those defined within the

database, and find the nearest class in the database that

shows any resemblance to nonmatching samples. This

method can also be applied to other materials in the food and

pharmaceutical industries. In theory, raw foodmaterials prior

to processing can be inspected using near-infrared spectros-

copy with SIMCA to detect abnormal agents (e.g., plasticizers)

that would be detected as being outside of the current data-

base of regular materials that should be found in the pro-

cessing operations. This inspection method could be

developed as a rapid and powerful tool for the early detection

of adulterants or contaminants in raw materials.

4. Conclusions

The method provided a flexible modeling database for the

control of raw materials when processing Chinese medicinal

herbs. Hotelling’s T2 and Q residuals are useful indicators in

the SIMCA models for evaluating differences between the

samples. The use of near-infrared spectroscopy integrated

with SIMCA can be developed into an accurate and high-

performance industrial method for online inspection

applications.
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