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Cholesterol is widely distributed in foods of

animal origin, and is susceptible to oxidation to
form cholesterol oxidation products (COPs) dur-
ing heating and illumination(1-4). More than 80
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Cholesterol oxidation products (COPs) formed in cholesterol-containing foods during
heating or illumination have been found to impart a potential hazard to health. Numerous
studies have indicated that COPs may have several adverse biological effects, such as muta-
genicity, carcinogenicity, angiotoxicity, cytotoxicity, atherogenicity, atherosclerosis, cell mem-
brane damage and inhibition of cholesterol biosynthesis. Therefore, the safety of COPs has
become a major concern for the public. This paper is an overview of analysis, formation and
inhibition of COPs in foods. COPs are routinely extracted by organic solvents, followed by
saponification and solid phase extraction for enrichment of COPs, and separation and identifi-
cation by thin-layer chromatography (TLC), high-performance liquid chromatography
(HPLC) or gas chromatography-mass spectrometry (GC-MS). The identification and quantifi-
cation of COPs using the GC-MS technique was found to be rapid and sensitive, however, the
formation of artifacts is a major drawback. The HPLC method failed to resolve several geo-
metrical isomers, and double bond-free COPs such as isomeric 5,6-epoxides and triol could
not be detected with UV. The oxidation of cholesterol can be accelerated by heating, pH, stor-
age conditions, the presence of food components and other factors. Several COPs are com-
monly present in food systems, including 7αα-OH, 7ββ-OH, 5,6αα-EP, 5,6ββ-EP, 7-keto, 20αα-OH,
25-OH and triol. Of these COPs, 5,6αα-EP, 5,6ββ-EP, 7-keto, 20αα-OH and 25-OH are primary
oxidation products, while 7αα-OH, 7ββ-OH and triol are secondary products. Some antioxidants
have been found to reduce the formation of COPs in an appropriate concentration. Also, ade-
quate packaging is necessary to provide a physical barrier for air and light, and thus minimize
cholesterol oxidation. Further research is necessary to study how to inhibit COPs formation in
foods.

Key words: cholesterol oxidation products, HPLC, GC-MS, processing method.
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COPs have been identified so far. The most com-
mon COPs present in foodstuff include the fol-
lowing: 7-ketocholesterol (7-keto), 6-ketocholes-
terol (6-keto), 7α-hydroxycholesterol (7α-OH),

7β-hydroxycholesterol (7β-OH), 5,6α-epoxycho-
lesterol (5,6α-EP), 5,6β-epoxycholesterol (5,6β-
EP), 25-hydroxycholesterol (25-OH), 20-hydroxy-
cholesterol (20-OH) and cholestanetriol (triol).

Figure 1. The chemical structures of some COPs.



Journal of Food and Drug Analysis. 1999. 7(4)

The chemical structures of these COPs and cho-
lesterol are depicted in Figure 1. 

In recent years, COPs have drawn much atten-
tion mainly because of their potential health
implications. Numerous studies have shown that
COPs may possess biological effects such as
mutagenicity(5), angiotoxicity(6,7), carcinogenicity
(8), cytotoxicity, atherogenicity and cell membrane
damage(7,9-11), and inhibition of cholesterol
biosynthesis(12,13). In addition, COPs may induce
atherosclerosis(7,14-16). 

Foods rich in cholesterol content such as dairy
products, eggs and meat products, are prone to
undergo autoxidation or enzymatic oxidation and
form COPs(17). COPs can also be generated during
food preparation when exposed to heat, air, light
and radiation(17). Moreover, inappropriate storage
conditions will also facilitate COPs formation(2).
Generally, heat, pH, light, oxygen, water activity,
and the presence of unsaturated fatty acids are the
major factors that influence COPs formation dur-
ing food processing or storage(4). Due to the
potential health risk of consumption of COPs-con-
taining foods, it is important to learn more about
the formation and inhibition of COPs in foods
during heating or illumination. This paper deals
with an overview of analysis, formation and inhi-
bition of COPs in foods. 

The susceptibility of cholesterol to oxidation
has been recognized and investigated for more
than a century(18). However, the formation path-
ways of certain COPs still have not been fully
clarified. Cholesterol oxidation is reported to be
similar to that of lipid oxidation(19), i.e., it can be
initiated in the presence of oxygen (air) at elevat-
ed temperatures or under light resulting in autoxi-
dation or photooxidation. The autoxidation of
unsaturated fatty acid such as oleic acid can be
initiated at C-8 or C-11, while the cholesterol
autoxidation can be initiated at C-7. Because of
the ring structure of cholesterol, the oxidation
products of lipids can be more complex than cho-
lesterol.  Since cholesterol-containing phospho-

lipids, fatty acids and cholesterol are associated
closely as the integral part of the lipid bilayer of
the cell membrane, the hydroperoxides derived
from oxidation of unsaturated fatty acids are
believed to play an important role in facilitating
cholesterol oxidation(19). Cholesterol consists of
four fused rings, an aliphatic side chain branched
to the D ring at C-17, a hydroxyl group attached
to the A-ring at C-3, and a double bond between
C-5 and C-6 of B ring (Figure 1). This double
bond makes both C-4 of A-ring and C-7 of B ring
on the same plane. One may expect that both the
C-4 and C-7 position should have an equal oppor-
tunity for an oxidative attack to occur. However,
C-7 is indeed a common position for oxidants to
react. In contrast, the attack rarely occurs at C-4
because of the possible shielding effect provided
by the neighboring hydroxyl group at C-3 and the
trialkyl substituted C-5(18). Both the 20- and 25-C
of the aliphatic side chain are at a tertiary posi-
tion, and are, therefore, more susceptible to oxida-
tive attack than the other carbons(19). 

I. Autoxidation 

Cholesterol oxidation can be initiated by
abstraction of hydrogen, predominantly at C-7,
followed by the addition of an oxygen molecule,
which leads to formation of 7α-hydroperoxycho-
lesterol (7α-OOH) or 7β-hydroperoxycholesterol
(7β-OOH), the primary oxidation product during
heating (Figure 2). The reduction of 7α- and 7β-
OOH further results in formation of 7α- and 7β-
OH, which are widespread in foods(20). Both iso-
meric 7-OOH can also undergo dehydration dur-
ing heating to form 7-keto(21,22), which is also a
major product of cholesterol autoxidation in the
food system. In addition, 7-keto can be formed
through dehydrogenation of the isomeric 7-OH in
the presence of radicals(23). Under basic condi-
tions, 7-keto can be converted to 3,5-cholestadien-
7-one and other compounds(18). For 5,6α-EP or
5,6β-EP, it can be formed when cholesterol is sub-
jected to autoxidation at pH 8 for 3 hrs(24).
However, with the direct attack of cholesterol by
singlet or triplet oxygen, only hydroperoxides, but
not epoxides, were formed(18). During autoxida-
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tion, the epoxides are formed when cholesterol is
in a crystalline state, in solution or in dispersion
(18). In addition, the interaction between choles-
terol and 7-OOH or 5-hydroperoxy-6-ene in chlo-
roform causes formation of 5,6-EP in a minor
amount. Maerker and Bunick(25) reported that the
ratio of 5,6α-EP/5,6β-EP was influenced by pH of
the dispersion, since β-epoxide was hydrolyzed
faster than α-epoxide. When cholesterol was dis-

persed in sodium stearate at pH 8, 5,6-EP was
observed(24). The isomeric 5,6-EP can be hydrated
under an acidic condition to form triol, which is
reported to be the most toxic COPs (18).

The side chain oxidation occurs in the solid
phase or in the crystalline form of cholesterol. The
oxidative attack at tertiary C-20 and C-25 position
generates 20-OOH and 25-OOH, respectively.
These hydroperoxides can be further degraded to

Figure 2. The formation pathways of some COPs during autoxidation.

Figure 3. The formation pathways of some COPs during irradiation.
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20-OH and 25-OH, which are quite stable and can
sustain consecutive heating at 100°C for 6
months(26). However, this type of oxidation is not
observed in solution or in aqueous dispersion(18).
The formation pathways of some COPs are sum-
marized in Figure 2. 

II. Photooxidation 

Photosensitizers such as chlorophyll and
hematoporphyrin can absorb energy in the form of
radiation and transfer it to the triplet oxygen so
that the more active singlet oxygen is formed. The
singlet oxygen then reacts with the double bond of
the B ring of cholesterol, resulting in migration of
one double bond and formation of 5-OOH(27). The
5-OOH can be further converted to the more sta-
ble 7-OOH or 6-OOH, which are present in minor
amount. Irradiation of 7-keto in aqueous disper-
sion results in formation of 7-ketocholestanol,
indicating that hydrogenation may occur through
the interaction between 7-keto and the radiolysis
products of water(28). However, with increasing
light intensity, both isomeric 5,6-EP and 7-OH
can be further converted to 6-ketocholesterol (6-
keto) and 7-keto, respectively(29,30). Interestingly,
the formation of a minor amount of the isomeric
7-OH was also observed. This result implied that
both 7-OH and 7-keto may be interconvertible
depending on the illumination conditions(23). The
formation pathways of some COPs during irradia-
tion are summarized in Figure 3. 

The analysis of COPs has been difficult
because of the presence of low concentrations
(ppm to ppt) in foods. Methods for COPs analysis
have been developed for decades. Prior to the
qualitative and quantitative steps, COPs must be
separated from the apolar fractions such as
triglycerides and esterified cholesterol. The so-
called “clean-up” step is referred to as the extrac-
tion procedure, which separates COPs and choles-
terol from other lipid-soluble compounds and
enriches them for further analysis. Methods for
isolation and identification of COPs have been

much improved from early thin-layer chromatog-
raphy (TLC) to high-performance liquid chro-
matography (HPLC) and gas chromatography
(GC). With the support of mass spectrometry
(MS) and nuclear magnetic resonance (NMR), the
identification of COPs becomes more precise and
accurate in current studies. The methods for COPs
analyses by TLC, HPLC and GC are summarized
in Table 1.

I. Saponification and Extraction

Saponification is a vital step, which is con-
ducted routinely to remove triglyceride, free fatty
acid and water soluble impurities during extrac-
tion of COPs from foods(31-39). Two saponification
procedures, cold and hot saponification, are often
employed. Many reports have shown that high
recovery can be achieved by cold saponification at
25°C (32,35-38), and the formation of COPs artifacts
can be retarded. However, the saponification time
is too long (18-20 h). Thus, some authors used hot
saponification (56°C) to facilitate the extraction of
COPs from foods(40). Nevertheless, it has been
reported that hot saponification may degrade 7-
keto and isomeric epoxides to form artifacts(40,19).
To remedy these problems several authors used
silica gel- or C18 cartridges to extract COPs from
foods(41-47). Nourooz-Zadeh and Appelqvist(48)

employed a Sep-Pak silica cartridge to enrich
COPs. The cartridge was washed with hexane-
1,2-dichloroethane (9:1, v/v) to remove triacyl-
glycerols, followed by 1,2-dichloroethane-
methanol (1:1, v/v) to elute COPs and polar lipids.
This method was rapid in removing excessive
amount of lipids and the recoveries of both radio
labeled 3H-cholesterol and 3H-triol reached 90%
and 97%, respectively. Therefore, the method is
suitable for lipid-rich products such as milk pow-
ders. Hwang and Maerker(30) applied a solid phase
extraction (SPE) column to extract COPs from
meats. The lipid extract was loaded in the column
and eluted serially with hexane-ethyl acetate of
100:2 (v/v), 85:15 (v/v) and 4:6 (v/v), respective-
ly. The first fraction contained triacylglycerol and
lipid-soluble impurities, while the second fraction
contained 4-cholesten-3-one, 4,6-cholestadien-3-
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one and 4-cholestene-3,6-dione. The other COPs,
including α-epoxide, β-epoxide and 7-keto, were
eluted in the third fraction. Penazzi et al.(1) used
an SPE florisil cartridge to purify 7-keto in sever-
al foods. The sample-loaded cartridge was washed
with 2-propanol-heptane (2:98, v/v) to remove tri-
acylglycerols and cholesterol, and 7-keto was
eventually recovered by acetone. Also, the authors
used an SPE silica cartridge to isolate 7-keto from
the same food items. The cartridge was first
washed by hexane-diethyl ether (8:2, v/v) to
remove impurities, followed by elution of 7-keto
by two solvents, hexane-diethyl ether (1:1, v/v)
and methanol (100%). The last two fractions con-
taining enriched 7-keto were pooled for further
analysis. The application of an SPE cartridge has
been considered an easier and faster method than
the cold saponification method(1). To purify COPs
from milk powders, Dionisi et al.(4) separated
COPs from the unsaponificable components using
an aminopropyl-SPE cartridge, with removal of
impurities by hexane/ethyl acetate (95/5, v/v) and
hexane/ethyl acetate (90/10, v/v). Finally, COPs
were recovered by acetone for further analysis.
The extraction efficiency of COPs by a Sep-Pak
C18 cartridge or a Sep-Pak silica gel cartridge has
been evaluated by Chen and Chen(39), who report-
ed that the former is more effective than the latter.
It has been well established that the application of
a cartridge for extraction of COPs is more effi-
cient and able to prevent the formation of COPs
artifacts. However, some impurities such as cho-
lesterol, cholesterol ester, free fatty acid and tria-
cylglycerol may be coeluted and thus interfere
with the subsequent separation and identification.
To solve this problem, the selection of an appro-
priate solvent system to remove impurities with-
out affecting the elution of COPs is extremely
important. 

Nourooz-Zadeh(45) applied an enzymatic pro-
cedure to release the esterified cholesterol oxides.
Although this practice can minimize degradation
of the labile COPs to form artifacts, it is a time-
consuming process since several TLC and solid-
phase extraction steps are necessary to enrich
COPs; therefore, this method is not practical forM
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routine analysis. Schmarr et al.(49) developed a
transesterification method to analyze polar COPs
such as hydroxycholesterols and triol. The trans-
esterification method was conducted under a mild
condition, which limited formation of artifacts.
Also, this method prevents formation of emul-
sions. Following transesterification, the samples
were subjected to an SPE column and a stepwise
elution with several solvents to separate COPs
from the other less polar compounds. Results
showed that high recovery (> 85 %), no artifact
formation and short analysis time were achieved.
This method apparently shows several advantages
over the other methods that have been discussed
previously, however, more studies with a variety
of food items are required to make a comparison
so that a final conclusion can be made. 

The application of different extraction tech-
niques may end up with variations in data, which
may have an impact on the interpretation of
results. To remedy this problem, Dionisi et al.(4)

compared two major extraction procedures; one
involved a preliminary fat extraction followed by
a saponification step, while the other involved a
direct saponification step. The unsaponificable
components and COPs were then isolated for fur-
ther analysis from milk powder samples. The lat-
ter method was found to be superior to the former
method in minimizing artifact formation, analysis
time and consumption of solvent. 

For many researchers, the development of a
method with simplicity, quickness and accuracy
for routine analysis of COPs is an ultimate goal.
Penazzi et al.(1) developed two methods for analy-
sis of 7-keto in egg noodles, biscuits, sweet
snacks, grated cheeses, whole-milk powders and
whole-egg powders. The first method was carried
out on a SPE florisil cartridge for enrichment of 7-
keto, followed by a normal-phase HPLC analysis,
while the second method used an SPE silica car-
tridge for enrichment of 7-keto and subsequent
analysis by a reversed-phase HPLC column. The
recoveries were higher than 99% for both meth-
ods. In addition, good sensitivity and repro-
ducibility were achieved. No degradation of 7-
keto was observed, mainly because of the exclu-

sion of the saponification step during extraction.
Despite these advantages, both methods are only
applicable for free 7-keto analysis, but not for its
esterified form. Moreover, these methods only
focused on single COP analysis, which may limit
their application to the other COPs. 

Artifacts are a major concern for the precise
quantification of COPs. Even though many meth-
ods have been used to quantify COPs, the results
have shown discrepancies. For the purpose of
monitoring formation of COPs artifacts, Rose-
Sallin et al. (50) added the deuterium-labeled cho-
lesterol ([2H7]Cholesterol) standard into the sam-
ples to determine the artifacts formed during the
clean-up steps. The labeled COPs, which were
derived from the labeled cholesterol and were
identified by GC-MS, represent the artifacts. The
artifacts were then subtracted from the unlabeled
COPs and allowed to measure artifact-free COPs.
This procedure may prevent interference of arti-
facts, however, it can be an expensive approach
because of the high cost of the labeled cholesterol
standard.  

II. TLC Analysis

Thin-layer chromatography (TLC) has been
used previously for separation of COPs(22,25,51,

59,78). Although TLC can readily separate some
side-chain and B-ring hydroxycholesterols, the
separation of cholesterol hydroperoxides has been
difficult(22). Nevertheless, TLC can be used to
confirm the identity of COPs based on their dis-
tinctive color development after spraying with
sulfuric acid and observation under UV light(19,25).
Finocchiaro et al.(52) analyzed COPs by using an
activated silica gel TLC plate, which was devel-
oped successively with diethyl ether and ethyl
acetate-heptane (1:1) to separate 7α-OH, 7β-OH
and 5,6-EP. The plate was then dried and sprayed
with 25% aqueous para-toluene sulfonic acid for
color development. The major drawback of this
method is that it is not able to separate the isomers
of 5,6-EP. Also, the method is tedious and not
appropriate for routine analysis. Moreover, the
quantitation of COPs based on the spot areas on
the TLC plate is not as accurate as that by HPLC
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or GC. Because of the limitation of this technique,
the application of TLC alone for COPs analysis
may end up with less reliable results. Neverth-
eless, TLC is a useful tool for COPs purification.
Nourooz-Zadeh and Appelqvist(48) applied a
preparative TLC technique to separate COPs from
milk powders. A mobile phase of toluene-
methanol (5:1, v/v) was used to elute cholesterol
and COPs, which were then scraped off and ana-
lyzed by GC. The COPs including 7α-OH, 7β-
OH, 5,6α-EP, 5,6β-EP and 7-keto on the TLC
plate were sprayed with 0.05% 1,2-dichlorofluore-
cein and viewed under UV light (365 nm).
Compared to the work of Finocchiaro et al.(52),
this method permits the use of a simple irrigation
system and is able to resolve both 5,6α-EP and
5,6β-EP. Pie et al.(37) also used the same technique
to separate COPs but with a different solvent sys-
tem (hexane-ether, 70:30, v/v). The COPs on the
TLC plate were visualized by spraying with
Rhodamin (Sigma, St. Louis, MO, USA) and
removed for further analysis by GC-FID and GC-
MS. Fontana et al.(53) employed a solvent system
of benzene-ethyl acetate-acetic acid (60:40:1,
v/v/v) to separate five COPs, 7α-OH, 7β-OH,
5,6α-EP, 5,6β-EP and 7-keto, in spray-dried eggs
by TLC, and visualized by spraying the plate with
0.1% Ce(SO4)2-2N H2SO4. Despite these advan-
tages, TLC is not suitable for quantitative analysis
because of low sensitivity and resolution. In view
of this problem, many methods such as high-per-
formance liquid chromatography (HPLC), gas
chromatography (GC) and gas chromatography-
mass spectrometry (GC-MS) have been developed
and become the most frequently used tools for
COPs analysis. 

III. HPLC Analysis

HPLC is one of the most widely used tech-
niques for separation of COPs and has been
shown to elute COPs effectively(39,42,44,45,51,54,55,56).
Both reversed- and normal-phase columns have
been applied to the separation of COPs, and the
former is reported to result in higher reproducibil-
ity than the latter(51,57). The reversed-phase col-
umn is currently used more often than the normal-

phase column.
Ansari and Smith (51) developed two HPLC

methods using a silica gel or a C18 column,
respectively, to resolve 10 COPs by using an iso-
cratic solvent system of hexane-isopropanol (24:1,
v/v) or acetonitrile-water (9:1, v/v), with detection
at 212 nm. However, baseline drift occurs and the
separation time (60 min.) is too long. Also, some
COPs are partially overlapped, and a C18 column
provides a better resolution than a silica gel col-
umn. Tsai and Hudson(54) also developed a HPLC
method to resolve 10 COPs by using a binary sol-
vent system of hexane-2-propanol (100:3, v/v),
with a flow rate at 3.0 ml/min and by refractive
index detection (RI). Separation is complete with-
in 28 min., however, several COPs are not ade-
quately resolved. The authors also demonstrated
that HPLC might resolve a variety of oxygenated
derivatives of cholesterol with polar groups on the
various carbon atoms of the isoprenoid side-chain.
Csiky(58) further developed a gradient solvent sys-
tem of hexane-propanol or hexane-butanol. Six
COPs and cholesterol were resolved within 30
min., with detection at 206 nm. However, baseline
drift occurs which can affect the quantitation
accuracy. Tsai and Hudson(41) used HPLC to puri-
fy COPs in egg yolk by employing a solvent sys-
tem of 2-propanol-hexane (2:98, v/v), with RI
detection and flow rate 1 ml/min. Two COPs,
5,6α-EP and 5,6β-EP, are adequately resolved,
however, the separation time (50 min.) is too long.
Also, the detection limit for both is 5 µg, which is
higher than that by UV detection. Finocchiaro et
al.(52) employed a C18 column with acetonitrite-
water (9:1, v/v) as the mobile phase. Column
effluent was monitored for detection of the epox-
ides and triol using a RI detector, whereas the 7-
OH was detected at 212 nm. Seven COPs are
resolved, however, some peaks are partially over-
lapped. Tsai and Hudson (41) employed a normal-
phase column and a solid probe MS technique to
identify two purified compounds form commer-
cial dry egg products as 5,6α-EP and 5,6β-EP.
However, this method is too tedious for COPs
detection. Park and Addis(44) employed a solvent
system of 2-propanol-hexane (7:93, v/v) to



Journal of Food and Drug Analysis. 1999. 7(4)

resolve 5 COPs within 25 min. with detection at
233 and 208 nm, and flow rate at 1 ml/min.
Herian and Lee (59) used a mobile phase of hexa-
ne-isopropanol (100:10, v/v) to separate 7α-OH
and 7β-OH within 8 min. with RI detection and
flow rate 2.0 ml/min. Although both 7α-OH and
7β-OH are adequately resolved, the sensitivity is
low and many impurities are present on the HPLC
chromatogram. Kou and Holmes(42) further used a
reversed-phase HPLC column to purify 25-OH,
followed by quantitation on a silicic acid column,
with detection at 205 nm and flow rate at 1.7
ml/min. The authors reported that the application
of two columns is necessary to obtain the consis-
tent baseline resolution of 25-OH from the other
contaminating peaks. Teng(55) compared three nor-
mal-phase columns with a mobile phase of hexa-
ne-isopropyl alcohol in different proportions for
separation of COPs. Results showed that the side-
chain COPs were eluted in the same order for all
of the columns, while the elution order of the
three B-ring oxidation products changed from col-
umn to column. Eleven COPs were resolved using
a µPorasil column (30 cm X 3.9 mm, 10-µm dp),
while 12 COPs were resolved using a Zorbax col-
umn (8 cm X 6.2 mm, 3-µm dp). Chen and Chen
(39) evaluated both CN- and C18-columns for the
separation of COPs. Hexane-2-propanol (95:5,
v/v) was used as the mobile phase for the former,
which resolved 8 COPs standards within 18 min.
For the latter, a gradient system of acetonitrite-
methanol in various proportions was used to
resolve 9 COPs within 60 min. Both columns
resulted in good resolution and steady baselines,
but the µPorasil column may be a better choice
because of the superior separation time. This
study also shows that UV detection is 1,000 times
more sensitive than RI detection, however, the
former is not applicable for cholesterol epoxides. 

IV. GC Analysis

Numerous GC methods have been developed
to separate the various COPs in foods(1,4,32-38,41,43-

45,49,50,60). The combination of GC and the flame
ionization detector (FID) provides a powerful tool
to precisely quantify COPs. For cholesterol and

COPs analyses, the conversion of these com-
pounds to trimethylsilyl (TMS) ether derivatives
is a frequently applied step to stabilize some of
the diols(18). Kao and Hwang(73) separated choles-
terol and 8 COPs with good resolution by using a
fused silica capillary (dimethyl polysiloxane) col-
umn. With the help of the purified standards, they
identified and quantified several COPs in baked
dried squid. The application of GC-MS with a
selected ion monitoring mode (SIM) and a capil-
lary column is generally regarded as the most
rapid and sensitive mean to identify COPs(4,50,60).
By comparing the mass spectrum with the estab-
lished chemical library, COPs can be easily identi-
fied with high accuracy. Park and Addis(32) used a
GC-MS with a fused silica capillary column to
identify and quantify 7α-OH, 25-OH, 5,6α-EP,
5,6β-EP, 7-keto and triol in heated tallow. In a
later study, Park and Addis(34) examined the for-
mation of COPs in some meat products by GC
equipped with the same column. The temperature
was programmed from 180°C to 250°C with a rise
of 3°C/min, and cholesterol and five COPs, 7α-
OH, 7β-OH, 5,6α-EP, 7-keto and triol were sepa-
rated and identified within 25 min. Sanders et
al.(36) also used a GC-MS method and a DB-1 col-
umn to separate and quantify 7α-OH, 7β-OH, 25-
OH, 5,6α-EP, 5,6β-EP, 7-keto and triol in a vari-
ety of cheese powders. Pie et al.(62) used a 30-m
fused capillary silica DB-5 column for separation
of 7α-OH, 7β-OH, 5,6α-EP, 5,6β-EP, 7-keto, 20-
OH, 25-OH and triol in meat products, followed
by detection with GC-MS. Ohshima et al.(63) ana-
lyzed COPs in fish products by conversion of
them to TMS-derivatives and subsequent separa-
tion and detection by GC with a flame ionization
detector (GC-FID). The identification of these
COPs was carried out in a quadrupole MS fitted
with an electron ionization source, and six COPs,
7β-OH, 7-keto, 5,6α-EP, 5,6β-EP, 25-OH and triol
were quantified. In addition, both GC-FID and
GC-MS were used to identify and quantify choles-
terol content in eggs(64). Schmarr et al.(49) deter-
mined COPs in several food products using GC-
FID and GC-MS, and a high recovery was found
for the moderate polar and polar oxysterols, how-
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ever, the less polar COPs may undergo partial loss
by this method. The identified COPs include 7α-
OH, 7β-OH, 19-OH, 20α-OH, 25-OH, 5,6α-EP,
5,6β-EP, 7-keto, 3β,5-dihydroxy-5α-cholestan-6-
one and triol. Among these COPs, some (19-OH
and 20α-OH) were rarely identified by HPLC. Li
et al.(65) used both GC-FID and GC-MS to identi-
fy and quantify several COPs in the heated oils,
including 7α-OH, 7β-OH, 5,6α-EP, 5,6β-EP and
7-keto. Dionisi et al.(4) employed a GC-MS tech-
nique to detect COPs in milk powders, and the
detection limit was reported to be 5 ppb. Due to
the chemical properties of COPs, most of the GC
columns used are with low polarity. The columns
used in various studies are listed in Table 1.

V. Comparison of HPLC and GC-MS

HPLC and GC-MS are the most frequently
used methods for COPs analysis. HPLC is often
carried out under ambient temperatures while GC
is under high temperatures. Although the resolu-
tion power of HPLC is theoretically inferior to
that of GC, the former can provide an ideal means
for sample recovery and purification. Meanwhile,
HPLC can simplify the quantification procedure,
shorten the analysis time and introduce fewer arti-
facts(54). HPLC is commonly equipped with an
UV detector to monitor COPs, however, some
double bound-free COPs such as the isomeric 5,6-
EP and triol can not be detected. The narrow
absorbance range of most COPs may result in
interference with detection as well as limitation of
the choice of solvents. In addition, the production
of solvent waste by HPLC analysis poses a dis-
posal problem. On the other hand, GC can be used
to resolve geometric isomers, which can not be
separated by HPLC. As mentioned, the combina-
tion of GC and MS is an effective tool for COPs
analysis, which includes not only quantification
but also identification. The mass spectrums
derived from GC-MS assist elucidation of the
chemical structures of COPs and further con-
tribute to their identification. However, the major
drawback of GC is that it may also thermally
destroy cholesterol and B-ring hydroperoxide to
form artifacts(38,52). In addition, COPs need a

derivatization step for GC separation, which
extend the analysis time and affect the quantita-
tion accuracy. Thus, HPLC can be more suitable
to the routine COPs analysis in food samples than
GC.

(To be continued in next issue)
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