

[Volume 4](https://www.jfda-online.com/journal/vol4) | [Issue 4](https://www.jfda-online.com/journal/vol4/iss4) | **Article 5** Article 5

Determination of benzyl isothiocyanate in papaya fruit by solid phase extraction and gas chromatography

Follow this and additional works at: [https://www.jfda-online.com/journal](https://www.jfda-online.com/journal?utm_source=www.jfda-online.com%2Fjournal%2Fvol4%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Sheu, F. and Shyu, Y.-T. (1996) "Determination of benzyl isothiocyanate in papaya fruit by solid phase extraction and gas chromatography," Journal of Food and Drug Analysis: Vol. 4 : Iss. 4, Article 5. Available at: <https://doi.org/10.38212/2224-6614.2971>

This Original Article is brought to you for free and open access by Journal of Food and Drug Analysis. It has been accepted for inclusion in Journal of Food and Drug Analysis by an authorized editor of Journal of Food and Drug Analysis.

利用固相萃取及氣相層析法分析 番木瓜中苄基異硫氰酯含量之研究

許 輔 徐源泰*

國立臺灣大學園藝學系

要 摘

本研究建立了以固相萃取法進行樣本前處理,再以氣相層析儀分析番木瓜中苄基異硫 氰酯含量的分析方法,同時探討苄基異硫氰酯在碳十八固相萃取管柱中的吸附與沖提。由貫 穿曲線及沖提曲線計算此法對含1,000 ppm苄基異硫氰酯的模擬樣本之最大理論濃縮係數為 1.5;而此法之最低檢出量爲100 ppb。多種番木瓜樣本的分析結果爲番木瓜種子含苄基異硫 氰酯141.7-342.7 ppm,果皮23.3-45.1 ppm,果肉21.2-43.1 ppm,木瓜牛奶15.2-19.8 ppm;平均 回收率爲95.1%。與傳統溶劑萃取法相較,固相萃取法具有簡便、高回收率、節約溶劑等優 點。

關鍵詞: 苄基異硫氰酯, 固相萃取, 番木瓜。

前 言

異硫氰酯(isothiocyanate)是蔬果中自然形 成且具刺激性的辛辣物質,也是芥子油(mustard oil)的主要成分(1), 存在於多種十字花科蔬 菜的葉片及種子中,會造成不良風味(2)。一般 水果中則較少有異硫氰酯存在,僅發現番木瓜 (又稱木瓜, Carica papaya L.)中含異硫氰酯類 化合物,且已確定其結構為苄基異硫氰酯(benzyl isothiocyanate, C₆H₅CH₂SCN, 簡 稱 BITC)(3,4)。 苄基異硫氰酯及其前驅物苄基異糖 苷(benzyl glucosinolate)是造成番木瓜及其加工 品具苦味的主要物質(5,6), 苄基異硫氰酯是 由 苄基異糖苷經芥子酶(thioglucosidase, 又稱 myrosinase, EC 3.2.3.1)水解產生(1,3)(圖一), 含 量隨番木瓜果實成熟的過程而降低,果肉含量 約4 ppm至300 ppm,但乾燥的種子含量可高達 5,000 ppm(5,6), 倘若以未完全清除種子的果肉 榨汁,則製成的番木瓜果泥便可能因含過量的

苯基異硫氰酯而導致不良的風味。另一方面, 由於異硫氰酯類化合物具有高活性的硫基團可 與酵素結合,也被證實能抑制酵素活性及微生 物生長(7),因此在蔬果產品的處理及加工上十 分具有應用潛力。

傳統上異硫氰酯類物質的分析方法是以溶 劑萃取法(solvent extraction)^(5,6)或是上部空間法 (headspace)進行樣本前處理(8),再以氣相層析 法(gas chromatography)分析及定量。溶劑萃取 法是取均質後的液體樣本以多倍體積的氯仿萃 取,收集萃液並經過濃縮後,再行氣相層析儀 分析,通常以火焰離子偵測器(flame ionization detector)檢測(5,6)。上部空間法為將已均質之樣 本置於密閉瓶中,予以加熱至揮發性物質揮發 後,抽取瓶內液面上部空間的氣體行氣相層析 儀分析(8)。以溶劑萃取法分析樣本中的異硫氰 酯類化合物時常因萃取樣本時的乳化現象影響 萃液的分離而降低回收率,同時也會因溶劑中 不純物引起的背景干擾(background noise)影響

Correspondence to: Yuan-Tay Shyu

Accepted for Publication: Sep. 26, 1996

分析結果;而利用上部空間法分析得到的僅是 揮發後的異硫氰酯量,並不能代表樣本中異硫 氰酸的全部含量,且上述二種傳統的前處理方 法都存在手續繁複且不符經濟的缺點(9-11),因 此有必要建立方便、快速且準確的分析方法。

固相萃取法(solid phase extraction)的原理 是利用固體吸附劑作為萃取樣本中有機化合物 的基質,當樣本與吸附劑分離後,再選擇適當 溶劑將吸附劑上所附著的化合物沖提出來(9)。 目前鍵結矽類(bonded silicas)已成為固相萃取 吸附劑的主流, 矽酸鎂(florisil)、C18、NH2都 是常用的吸附劑(11,12),也已有這些材質的固相 萃取管匣商品問世(9,11-12)。以固相萃取法分析 有機化合物時,必需要考慮吸附管匣對該待測 物的吸附率以及溶劑的沖提率,才能提高前處 理過程中待測物的回收率,因此固相萃取管匣 及沖提溶劑的選擇十分重要(12)。由於苄基異硫 氰酯屬中低極性的小分子化合物,故可適於應 用固相萃取法進行樣本的前處理。

本研究擬發展利用固相萃取法進行樣本前 處理,再以氣相層析儀檢測的番木瓜中苯基異 硫氰酯分析方法,同時探討利用商業化管匣進 行萃取時, 苄基異硫氰酯在管匣中的吸附與沖 提關係,並比較固相萃取法與溶劑萃取法的差 異。另一方面,亦擬檢驗本省常見的番木瓜品 種及番木瓜加工品中的苯基異硫氰酯含量,找 出較不具苦味的加工品種。

材料與方法

一、材料

台農2號,5號,蘇魯,日陞等品種之番木 瓜果實由臺灣省廚師公會理事長許耀楠先生提 供,成熟度約接近完熟,木瓜牛奶樣本購自坊 間冰果室及超級市場。

液體標準品苄基異硫氰酯(benzyl isothiocyanate)購自美國Aldrich公司(Milwaukee, WI); 苯基異硫氰酯(phenyl isothiocyanate)、甲 醇、正己烷、二氯甲烷購自德國Merck公司 (Frankfurter) ·

固相萃取管匣(Extra-Sep column C₁₈, 200 mg, 3.0 mL cartridge)購自美國 Lida公司 (Kenosha, WI), 真空萃取裝置(12 position vacuum extraction manifolds)購自美國Cole-Parmer公 司(Niles, IL)。

二、實驗方法

(-)標準原液之配製及標準曲線(standard curve)之製作

分别精秤 500 mg 苄基異硫氰酯溶於50 ml 甲醇, 配成10,000 ppm之標準原液(stock solution)。以甲醇稀釋標準原液至不同濃度(0.5, 1, 5, 10, 50, 100, 500 ppm), 各取1μl注射氣相層 析儀分析,以苄基異硫氰酯離子吸收峰的積分 面積為反應量,每一濃度均做三重複。以反應 量為縱軸苄基異硫氰酯濃度為横軸做圖,得標 準曲線。

□様品中苄基異硫氰酯的固相萃取方法

將 C_{18} Extra-Sep固相萃取管匣置於真空萃 取裝置上, 取2 ml正己烷活化管匣並除去管匣 中的干擾物質,再於匣中加入待測的樣本溶液 3 ml, 管匣經樣本適當地潤溼之後, 利用真空 幫浦以約略5 ml/min的流速使樣本通過管匣, 並繼續抽真空30秒以去除滯留的水分。最後以 1 ml正己烷沖提管匣中的滯留物質, 取沖提液 1μl行氣相層析儀分析,比對標準曲線定量。

□固相萃取之貫穿曲線(breakthrough curve) 及沖提曲線(elution curve)之製作

以去離子水稀釋苄基異硫氰酯標準原液製 作濃度為1,000 ppm之模擬樣本溶液。分别取 200至2,000μl不等體積之模擬樣本進行固相萃 取, 以1 ml正己烷沖提管柱, 取沖提液1μl行 氣相層析儀分析,比對標準曲線定量,每一材 料均做三重複。以沖提液中苄基異硫氰酯含量 (Ce)除以流入液中含量(C;)所得到之相對分率 $(C_r, C_r = C_e/C_i)$ 為縱軸,使用的模擬樣本體積 為横軸做圖,可得到貫穿曲線。

分别取1,000 ppm之苄基異硫氰酯模擬樣 本溶液0.5 ml,1 ml及1.5 ml載入管匣進行固相萃 取,但管匣的沖提分二次進行,第一次沖提取 100至2,000μl不等體積之正己烷進行沖提,第 二次均取1 ml正己烷沖提,取第二次沖提之萃 液1µ1行氣相層析儀分析,比對標準曲線定 量,每一試驗均做三重複。原模擬樣本濃度 中苄基異硫氰酯濃度減去第二次萃液之濃度即 得到第一次沖提液之濃度,以第一次沖提液 中苄基異硫氰酯含量(Ce)除以流入液中含量(Ci) 所得到之相對分率 $(C_r$, $C_r = C_e/C_i$)為縱軸沖提 率為横軸,第一次沖提使用的正己烷體積為横 軸做圖,可得到沖提曲線。

网檢量線(calibration curve)之建立

以去離子水稀釋苄基異硫氰酯至不同濃度 (0.5, 1, 10, 50, 100, 500 ppm), 均加入內部標準 品(internal standard)苯基異硫氰酯(phenyl isothiocyanate)至濃度為10 ppm,作成不同濃度之模 擬樣本。分别將模擬樣本依前述方法進行固相 萃取,取1μ1萃液注射氣相層析儀分析,以目 標離子吸收峰的積分面積為反應量,每一濃度 均做三重複。以苄基異硫氰酯對苯基異硫氰酯 的反應量比當縱軸,濃度比當横軸,繪得檢量 線。

依苄基異硫氰酯及苯基異硫氰酯在氣相層 析儀之反應量,可計算二者之相對表現因子 (relative response factor, RRF) 。亦即:

 $RRF = (A1/W1) / (A2/W2)$ (1) 於分析時,在樣本中加入一定量已知濃度 之内部標準品,則苄基異硫氰酯之含量可依公 式(2)計算求得:

Benzyl isothiocyanate (μ g/ml) = (A1/A2) \times

 (2)

 $(W2/RRF) \times (1/V)$

A1= 苄基異硫氰酯之波峰面積。

A2=内部標準品之波峰面積。

W1=苄基異硫氰酯之重量(ng)。

W2=内部標準品之重量(ng)。

V=樣本之體積(ml)

田最低檢出量試驗

以去離子水稀釋苄基異硫氰酯標準原液至 不同濃度(10, 20, 50, 100, 500 ppb), 並加入內 標準品苯基異硫氰酯至濃度為10 ppm,作成不 同濃度之模擬樣本。分别將模擬樣本進行固相 萃取,取萃液1μl注射氣相層析儀分析,按苄 基異硫氰酯及苯基異硫氰酯在氣相層析圖譜之 面積比,比對檢量線定量。估計苄基異硫氰酯 之最低檢出量,每一濃度均做三重複。

伪番木瓜様本之添加回收試驗

番木瓜果實經洗淨削皮及去子後,謹慎分 成果皮、果肉及種皮三部份為樣本。取50 g樣 本置於果汁機內並加入去離子水50 ml稀釋 後, 劇烈攪碎3分鐘, 再以均質機15,000 rpm攪 拌30秒後,以玻璃砂漏斗(G4級)過濾除去殘 渣,收集濾液。木瓜牛奶樣本則直接加入等重 之去離子水,均匀攪拌後再過濾,收集濾液。 取一定量樣本濾液加入苯基異硫氰酯至濃度為 10 ppm, 空白組樣本不添加苄基異硫氰酯, 添 加組樣本則再加入10 ppm苄基異硫氰酯,完成 樣本的初製備。

取初製備後之各組樣本3 ml經固相萃取及

氣相層析分析後,比對檢量線並校正稀釋倍數 以計算 * 基異硫氰酯含量, 每一試驗均做三重 複。依空白組及添加組苄基異硫氰酯相差量除 以 苄基異硫氰酯添加量,可計算二者之回收率 (recovery)。亦即:

Relative recovery $(\%)$

 $= (C1-C0) / 10 X 100\%$ (3)

C0=空白組苄基異硫氰酯之濃度偵測量 (ppm)

C1=添加組苄基異硫氰酯之濃度偵測量 (ppm)

(t)固相萃取法與溶劑萃取法之比較

番木瓜果皮、果肉及種皮樣本溶劑分别以 固相萃取法以及溶劑萃取法定量。

溶劑萃取法修改自Tang^(5,6): 分别取初製 備後之番木瓜果皮、果肉、種子及木瓜牛奶樣 本30g,以二氯甲烷50 ml萃取三次,若萃取時 分層困難則輔以超音波震盪或離心, 最後收集 二氯甲烷萃液。萃液以無水硫酸鈉除水後,先 減壓蒸餾至體積小於5 ml,再將濃縮液以二氯 甲烷洗入濃縮管中,以氮氣吹拂及水浴濃縮, 定容至1 ml。取其中1μl注射氣相層析儀分析 後,比對檢量線並校正稀釋倍數以計算苄基異 硫氰酯含量,每一試驗均做三重複。

(八氣相層析/質譜分析條件

氣相層析儀/質譜偵測器(HP-5890 series2 GC, HP 5971 Mass Spectrum Detector, HP 7673 Autosampler, HP Vectra 486/33 Workstation, HP-ChemStation V.2.00 Software)

毛細層析管柱:0.2 mm X 20 M Carbowax 20 M(HP-20M). 升温條件:oven temp:50℃, hold 2 mins, 10° C/min to 100° C, hold 1 min, 10° C/min to 200℃; 注射器 200℃; 檢測器 250℃; 氦氣流 $\mathcal{F} = 0.6$ mL/min (m=30.9 cm/sec, measured at 60°C); 注射容積 = 1 µ 1.

質譜分析條件:SIM mode, scan target ions 65, 91, 149(BITC), 51, 77, 135(PITC), Dwell time per ion = 10 msec, 0 volts relative to autotune.

結果與討論

一、固相萃取系統中苄基異硫氰酯的吸附與沖 提

苄基異硫氰酯屬中低極性之化合物,在水 中的溶解度很低,故在考慮固相萃取管匣的種

Figure 1. Benzylglucosinolate, upon enzymatic hydrolysis with thioglucosidase (EC 3.2.3.1) produces benzyl isothiocyanate⁽¹⁾.

Figure 2. Breakthrough curve of benzyl isothiocyanate on Sep-Pak C_{18} cartridge. $C_r = C_e/C_i$, where C_e and C_i are the amounts of the analyte in the effluent and influent.

類時,依據物質之極性類似則分子間作用力較 大的觀念,以選擇逆相(reverse phase)管匣較有 利於苄基異硫氰酯在管匣內滯留,而逆相管匣 中又以C18管匣最為常用。當使用逆相管匣 時,由於希望減少溶劑使用量, 在提高前處理 中苄基異硫氰酯的濃縮倍數及回收率的前提 下, 選擇沖提溶劑的種類是很重要的, 由於正 己烷在逆相環境中極性最低且固相萃取時沖提 效率(elution efficiency)最佳,因此選擇以正己 烷作為本實驗的沖提溶劑。

在固相萃取系統中,待測物的回收率是滯 留效率以及沖提效率的函數(11),因此必需先做 出貫穿曲線及沖提曲線才能建立出高回收率的 分析方法。圖二為1,000 ppm苄基異硫氰酯模

Figure 3. Elution curve of benzyl isothiocyanate on Sep-Pak C₁₈ cartridge, measured as its concentration in n-hexanic effluent fractions. $C_r = C_e/C_i$, where C_e and C_i are the amounts of the analyte in the effluent and influent.

擬樣本對C18管匣之貫穿曲線。由圖二可計算 其貫穿體積(breakthrough volume)約為1,200μ1 , 而貫穿體積之內的滯留率則達95.42%, 相當 於含1.2 mg 苄基異硫氰酯之樣本流經管匣時, 樣本內的苄基異硫氰酯都能幾乎被管匣吸附而 不流失。由於食品樣本中尚存有其他成分亦會 被管匣吸附,因此實際操作時管匣對苄基異硫 氰酯的吸附容量(adsorption capacity)可能會略 低於此值。

圖三為正己烷對已完全吸附苄基異硫氰酯 之管匣的沖提曲線。圖三顯示以800μ1正己烷 沖提時沖提率即可達到97.48%,此值可視為系 統的最適沖提體積(elution volume), 由貫穿體 積(VB)1,200 μl及沖提體積(W)800 μl可進一步

BITC content (ppb)	Detectability	Recovery ^a $(\%)$	$S.D.^b(\%)$
1,000	Yes	98.7	1.4
500	Yes	95.9	3.7
100	Yes	92.3	9.3
50	Yes	77.6	19.1
10	No	$\,$	$\,$

Table 1. Lowest quantitatively determinable concentration of benzyl isothiocyanate (BITC) in simulation sample by solid phase extraction and GC detection

 a_{\cdot} Quantitated by calibration curve.

b: Coefficient of variation $(cv\%)$. Average of three experiments.

Figure 4. Calibration curve of benzyl isothiocyanate by Sep-Pak C_{18} cartridge extraction and GC analysis. Phenyl isothiocyanate was added as internal standard.

計算得到系統的最大理論濃縮係數(maximum theoretical preconcentration factor, F=V_B/W)約為 1.5(對苄基異硫氰酯濃度為1,000 ppm之模擬樣 本而言)。由於考慮試驗時操作與計算的方便 性,故將管匣中樣本的載入量固定為3 ml,同 時提高正己烷的沖提體積至1 ml, 以此條件處 理含苄基異硫氰酯濃度為400 ppm以下的樣本 時,其理論濃縮係數F值為3.0(對一般番木瓜樣 本而言)。

Figure 5. Comparison of gas chromatograms between dichloromethane extraction (A) and Sep-Pak C₁₈ cartridge extraction(B) on papaya (Solo cultivar) seeds.

二、固相萃取方法的建立

由貫穿曲線及沖提曲線可發現C18固相萃 取管匣對苄基異硫氰酯的吸附率可達95.42%, 正己烷對管匣中苄基異硫氰酯(phenyl isothiocyanate)的沖提率達到97.48%,因此整個固相 萃取過程的回收率應可達93%以上,十分適於 樣本之分析。為進一步降低實驗誤差我們選擇 添加苯基異硫氰酯作為內標準品,以內標準法 比對檢量線定量。圖四為模擬樣本經固相萃取

Table 2. Contents and recoveries of benzyl isothiocyanate (BITC) from the papaya samples by solid phase extraction and GC detection

10 ppm of benzyl isothiocyanate was added to each spiked sample. a :

Blank and spiked samples were quantitated by calibration curve. **:** Recovery was calculated by detected amount dividing spiked amount.

Coefficient of variation (cv%). \mathbf{c} : Average of three experiments.

Table 3. Comparison of benzyl isothiocyanate(BITC) contents in papaya samples between solid phase extraction and dichloromethane extraction

^a: All 3 repeats were seriously emulsified.

Average of three experiments.

後,以苄基異硫氰酯對苯基異硫氰酯之氣相層 析波峰面積比(Y軸)對其濃度比(X軸)做圖所得 之檢量線,其中線性回歸係數為0.9947,顯示 此方法的線性關係及可重複性均良好,而苄基 異硫氰酯對苯基異硫氰酯之相對表現因子為 0.4357 \circ

番木瓜液體樣本的固相萃取條件是參考自 文獻上之相關程序(9,11-12)以及貫穿曲線與沖提 曲線之實驗結果而建立,預試驗的結果顯示以 正己烷潤洗並活化管匣中吸附劑的步驟十分重 要,其次是樣本流經管匣的流速不可過快,以 利苄基異硫氰酯的吸附。圖五為蘇魯種(solo cultivar)番木瓜種子經萃取及氣相層析分析後 所得的氣相層析圖譜,其中苯基異硫氰酯及苄 基異硫氰酯的滯留時間分别為10.539及15.253 分鐘。表一為本方法之最低檢出量試驗結果, 顯示苄基異硫氰酯的最低檢測量約為100 ppb o

三、番木瓜樣本中辛基異硫氰酯含量的檢測結 果

表二為添加10 ppm 苄基異硫氰酯於不同番 木瓜樣本中的添加回收試驗結果,其中平均回 收率為95.12%,變異係數平均為7.2%。表二顯 示番木瓜中苄基異硫氰酯的含量依果實部位而 異, 各品種均以種子含量最高(141.7-342.7 ppm), 果皮次之(23.3-45.1 ppm), 而果肉含量 最低(21.2 - 43.1 ppm)。比較各番木瓜品種內 之苄基異硫氰酯含量發現以臺農五號品種含量 較低。上述結果除可作為番木瓜果實加工時選 擇品種的參考外,也可印證謹慎地去除種子與 果皮是防止番木瓜加工品含苦味的重要步驟。 另一方面,木瓜牛奶的試驗結果則顯示樣本雖 經牛乳及水的稀釋,仍可測得苄基異硫氰酯存 在(15.2-19.8 ppm), 因此苄基異硫氰酯含量的 檢測也可作為判斷木瓜牛奶樣本是否摻假的參 考。

四、固相萃取法與溶劑萃取法的比較

分别以固相萃取法與二氯甲烷萃取法進行 前處理,進行番木瓜樣本中苄基異硫氰酯含量 分析的結果如表三所示,應用傳統的溶劑萃取 法在番木瓜種皮、果泥以及新鮮木瓜牛奶的樣 本分析時都會發生嚴重的乳化現象,經超音波 震盪及高速離心都無法提高回收率(僅57.2-73.5%),而番木瓜種子中的苄基異硫氰酯含量

則與固相萃取組的分析結果接近,唯回收率亦 較低(88.3%)。表三之結果顯示固相萃取法在實 驗的方便性、準確性及回收率上均優於傳統的 溶劑萃取法,此外固相萃取法還具有簡易、經 濟、節省溶劑的優點,因此十分適宜應用固相 萃取法於番木瓜中苄基異硫氰酯的分析。

參考文獻

- 1. Kawakishi, S. 1985. Glucosinolates Their Enzymatic Degradation, Reactivity and Toxicity of Degradation Products. Nippon Shokuhin Kogyo Gakkaishi. 32(11): 836-846.
- 2. Fenwick, G. R., Griffiths, N. M. and Mullin, R. K. 1983. Bitterness in Brussels Sprouts (Brassica oleracea L. var gemmifera). The Role of Glucosinolates and Their Breakdown Products. J. Sci. Food Agric. 34: 73-80.
- 3. Ettlinger, M. G. and Hodgkins, J. E. 1956. The Mustard Oil of Papaya Seed. J. Org. Chem. 21:204-206.
- 4. Gmelin, R. and Kjaer, A. 1970. Glucosinolates in the Caricaceae. Phytochem. 9:591-593.
- 5. Tang, C. S. 1971. Benzyl Isothiocyanate of Papaya Fruit. Phytochem. 10:117-121.
- 6. Tang, C. S. 1973. Location of Benzyl Isothiocyanate and Thioglucosidase in Carica papaya Fruit. Phytochem. 12:769-773.
- 7. Delaquis, P. J. and Mazza, G. 1995. Antimicrobial Properties of Isothiocyanates in Food Preservation. Food Tech. 49(11):73-84.
- 8. Yano, M., Itoh, H. and Saijo, R. 1987. Allyl Isothiocyanate and its Contribution to Pungecy in Cabbage (Brassica oleracea L.). Nippon Shokuhin Kogyo Gakkaishi. 34(9): 608-611.
- 9. Wang, W. K. and Huang, S. D. 1989. Rapid Determination of Seven Herbicides in Water or Isoctane Using C18 and Florisil Sep-Pak Cartridges and Gas Chromatography with Electron-Capture Detection. J. Chromatogr. 483:121-129.
- 10. Lopez-Avila, V., Milanes, J. and Dodhiwala, N. S. 1989. Cleanup of Environmental Sample **Extracts Using Florisil Solid-Phase Extraction** Cartridges. J. Chromatogr. Sci. 27:209-215.

- 11. Chladek, E. and Marano, R. S. 1984. Use of Bonded Phase Silica Sorbents for the Sampling of Priority Pollutants in Wastewaters. J. Chromatogr. Sci. 22:313-320.
- 12. Liska, I. and Kuthan, A. 1990. Comparison of Sorbents for Solid-Phase Extraction of Polar Compounds from Water. J. Chromatogr. 509:123-134.

Determination of Benzyl Isothiocyanate in Papaya Fruit by **Solid Phase Extraction and Gas Chromatography**

FUU SHEU AND YUAN-TAY SHYU*

Department of Horticulture, National Taiwan University, Taipei, Taiwan, R.O.C.

ABSTRACT

In this study, a method for benzyl isothiocyanate (BITC) determination in papaya samples was established by solid phase extraction and GC analysis. The adsorption as well as the elution of BITC in a commercial C_{18} cartridge are discussed. The maximum theoretical preconcentration factor calculated from the breakthrough curve and elution curve was 1.5 (based on simultaneous samples containing 1,000 ppm BITC). The lowest detectable level was 100ppb, and the

linearity was acceptable. Four cultivars of papaya fruits were analyzed and the BITC contents ranged from $141.7 - 342.7$ ppm in seed, 23.3 -45.1 ppm in pericarp, 21.2-43.1 ppm in pulp, and 15.2 to 19.8 ppm in papaya milk. The average recovery was 95.1%. Results showed the advantages of solid phase extraction of BITC: easy and rapid operation, higher recovery, and the use of less solvent, comparing to conventional solvent extraction method.

Key words: Benzyl isothiocyanate, solid phase extraction, papaya.