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Abstract

A total of 81 lemon juices samples were detected using an optimized UHPLC-QqQ-MS/MS method and colorimetric
assays. Concentration of 3 organic acids (ascorbic acid, malic acid and citric acid), 3 saccharides (glucose, fructose and
sucrose) and 6 phenolic acids (trans-p-coumaric acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 3,4-dihydrox-
ybenzoic acid, caffeic acid) were quantified. Their total polyphenol, antioxidant activity and Ferric reducing antioxidant
power were also measured. For the prediction of authentic and adulterated lemon juices and commercially sourced
lemonade beverages based on the acquired metabolic profile, machine learning models including linear discriminant
analysis, Gaussian naïve Bayes, lasso-regularized logistic regression, random forest (RF) and support vector machine
were developed based on training (70%)-cross-validation-testing (30%) workflow. The predicted accuracy on the testing
set is 73e86% for different models. Individual conditional expectation analysis (how predicted probabilities change
when the feature magnitude changes) was applied for model interpretation, which in particular revealed the close as-
sociation of RF-probability prediction with nuance characteristics of the density distribution of metabolic features. Using
established models, an open-source online dashboard was constructed for convenient classification prediction and
interactive visualization in real practice.

Keywords: Interpretable machine learning, Citrus limon, Quality control, R shiny application, UHPLC-QqQ-MS/MS

Chemical Compounds: citric acid, PubChem CID: 311, sucrose, PubChem CID: 5988, ascorbic acid, PubChem CID:
54670067, glucose, PubChem CID: 5793, fructose, PubChem CID: 2723872, malic acid, PubChem CID: 525, trans-p-cou-
maric acid, PubChem CID: 637542, 3-hydroxybenzoic acid, PubChem CID: 7420, 4-hydroxybenzoic acid, PubChem CID:
135, 3, 4-dihydroxybenzoic acid, PubChem CID: 72, caffeic acid, PubChem CID: 689043, gallic acid, PubChem CID: 370,
trolox, PubChem CID: 40634

1. Introduction

A pplications of citrus, one of the most
consumed fruits due to its pleasant flavor,

aroma and multiple health benefits continues to
be of increasing consumer and industry interest.

Lemon, classified as Citrus limon (L.) Burm. f., is
the third most important citrus species after or-
ange and mandarin, and has been associated with
a great variety of health and therapeutic benefits
relative to weight loss, skin, eyecare as well as
against respiratory disorders and urinary
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disorders, etc [1,2]. However, economically moti-
vated adulteration (EMA) of lemon juice has been
and remains a problem [3]. The EMA of juice may
not only decrease the bioactive compounds but
also poses potential health risks to the consumer
[4]. Common adulterations in lemon juice include
undeclared addition of sugar and water, peel and/
or pulpwash, organic acid such as citric acid,
ascorbic acid and malic acid, and juices from
other botanically related citrus species [5].
Titratable acidity (4.5% w/w as citric acid) and sol-

uble solids, together refer to the refractometric su-
crose value (6% by weight at 20 �C), are the only two
regulatory specifications inAmerica [6]. The titratable
acidity and soluble solids is intended for detection of
water addition, but fails in cases of lemon juice dilu-
tion with simultaneous addition of inexpensive sugar
and citric acid [4]. To improve adulteration detection,
other common chemical and physical parameters are
routinely analyzed and then compared with the
reference data reported by the Association of the In-
dustry of the Juices and Nectars (AJIN) from Fruits
and Vegetables [4]. Apart from the traditional ap-
proaches, more sophisticated methods have been
proposed, such as by means of analysis of carbon
isotope ratios in citric acid and other marker com-
pounds in the lemon juices [7]. This method, though
appears effective in detection of sugar and water
addition, requires highly trained staff and dedicated
instrument for chemical analysis. Other approaches
involve the calculation of amino acids ratio and the
analysis of flavonoids profile [7e10] to judge
authenticity but are unable to distinguish adultera-
tion using juices from other botanically related citrus
species such as grapefruit and limes due to lack of
uniqueness of marker compounds.
Another major limit of past research on lemon

juice adulteration detection is in the weak experi-
mental design with those studies that only used lab-
or home-made juices pressed straight from fresh
lemons, as these processes unfortunately do not
necessarily represent the commercial lemonade nor
concentrated lemon juices. For example, extra
water, sugar and citric acid were usually added to
lemonade beverages for a better taste. For indus-
trially sourced concentrated lemon juice, heat-based
concentration and pasteurization generally in-
creases the concentration of compounds by removal
of water but could meanwhile destroy thermal-
labile compounds. Besides, the common use of resin
for juice filtration and clearing purpose could easily
cause loss of phenolic compounds due to the
retention of the resin.

To facilitate practical and robust identification of
lemon juice adulteration, we propose a new meth-
odology and provide validation for its application
and use. A total of 81 lemon juice samples were
analyzed, including industrially sourced authentic
and adulterated lemon juice, home-made lemon
juice and manually spiked one, as well as marketed
lemonade beverages. A chemical fingerprint was
established by quantitative analysis of 14 metabolic
features using ultra-high performance liquid chro-
matography with triple quadrupole mass spec-
trometry (UPLC/QqQ-MS) as well as colorimetric
assays for total polyphenols and antioxidants. Based
on analysizing the outcomes from the analytical
approaches, machine learning models were estab-
lished for authenticity and identity prediction using
the train-cross-validation, and an online open
source dashboard was constructed to automate
prediction for future new samples.

2. Materials and methods

2.1. Materials and chemical reagents

Citric acid (CTA), sucrose, ascorbic acid (AA),
glucose, fructose, malic acid (MA), trans-p-coumaric
acid ( p-CA), 3-hydroxybenzoic acid (3-HBA), 4-
hydroxybenzoic acid (4-HBA), 3, 4-dihydrox-
ybenzoic acid (3, 4-diHBA), caffeic acid (CFA), gallic
acid (GA), trolox standards were purchased from
Sigma-Aldrich (St. Louis, MO, USA); ferulic acid
(FA) was from ChromaDex Inc. (Irvine, CA, USA).
Chemical reagents (all HPLC grade) including
ammonium formate, ammonium acetate, ammo-
nium hydroxide, formic acid, acetonitrile (ACN) and
methanol were from Fisher Scientific (Fair Lawn, NJ,
USA). Reagents (all ACS grade) including ethyl-
enediaminetetraacetic acid (EDTA), Folin Cio-
calteu's reagent, sodium carbonate, 2, 3, 5-
triphenyltetrazolium chloride (TPTZ), 2, 20-azino-
bis(3-ethylbenzothiazoline-6-sulfonic acid) dia-
mmonium salt (ABTS), potassium persulfate, so-
dium acetate trihydrate, glacial acetic acid,
hydrochloric acid were from Fisher Scientific (Fair
Lawn, NJ, USA). Pierce™ LC-MS water was from
Thermo Fisher Scientific (Waltham, MA, USA).

2.2. Preparation of reference standards

For reference solutions of CTA, ca. 10 mg of
standard was accurately weighed and diluted to
10 mL using 0.1% formic acid in water. Aliquot of
100 mL stock solution was spiked into 10 mL 0.1%
formic acid in water to make the first work solution.
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Further serial dilutions were made using the same
solvent to 1000e0.06 mg/mL.
For preparation of reference solutions of AA, MA

and solutions of saccharides (fructose, glucose and
sucrose), ca. 10 mg of each standard was accurately
weighed and dissolved in 10 mL 0.1% formic acid
with saturated EDTA. Aliquot of 100 mL stock solu-
tion was spiked into 10 mL 0.1% formic acid in
saturated EDTA solution to make the first work
solution. Further serial dilutions were made using
the same solvent to give work solutions having
1000e0.06 mg/mL standards.
For reference solutions of phenolic acids including

FA, p-CA, 3-HBA, 4-HBA, 3,4-diHBA and CFA, each
standard ca. 15 mg was accurately weighed and
prepared in 10 mL 0.1% formic acid in 70% meth-
anol solution. Aliquot of 40 mL stock solution was
spiked into 10 mL 0.1% formic acid in 70% methanol
solution to make the first work solution, which was
then serially diluted using the same dilution solvent
to 4000e0.1 ng/mL as the work solutions.

2.3. Lemon juice and sample preparation

The commercially sourced authentic lemon juices
(AULJ) [1e23] and adulterated lemon juices (ADLJ)
(27e43) (either filtered and clear, or unfiltered and
cloudy) were internally obtained from Citromax
Group (Carlstadt, NJ, USA), including 23 different
authentic samples and 17 identified adulterated
ones. For preparation of hand-made juices, fresh
lemon fruits purchased from local supermarkets
were ground and squeezed and the collected juice
was blended with water (1:1) as the self-made AULJ.
To prepare hand-made ADLJ, lab made apple juice
was spiked into random AULJ, with AULJ/apple
juice volume ratio at 90/10, 70/30 and 50/50. A total
of 3 hand-made AULJ (24e26) and 10 hand-made
ADLJ (44e53) were prepared. In addition, 28
different commercially sourced lemon juice (54e57)
and lemonade (LMND, 58e81) were collected from
the commercial market. All juice samples were
stored in �20 �C and conditioned to room temper-
ature before sample analysis.
For analysis of CTA using LC-MS method (a), all

lemon juice samples were mixed with 0.1% formic
acid in water (1:10) and sonicated for 15 min 100 mL
of each diluted sample was further diluted with
10 mL of the same solvent followed by sonication for
15 min. An aliquot of 100 mL diluted sample was
mixed with 10 mL 0.1% formic acid in water and
vortexed for 30 s. Then 200 mL solution was diluted
to 1 mL, the final sample solution was now 500,000
times more diluted than the original sample. The
prepared sample was centrifugated at 12,000 rpm

for 10 min and the supernatant was directly injected
into UHPLC.
For instrumental analysis of organic acids and

saccharides using LC-MS method (b), all lemon
juice samples were mixed with 0.1% formic acid in
saturated EDTA solution (1:10) and sonicated for
15 min. An aliquot of 20 mL diluted sample was
mixed with 10 mL of the same dilution solvent as
above and sonicated for 15 min. Then 100 mL solu-
tion was diluted to 1 mL, which was now 50,000
times more diluted than the original sample. The
prepared sample was centrifugated at 12,000 rpm
for 10 min and the supernatant was directly injected
into UHPLC.
For analysis of phenolic acids using LC-MS

method (c), all lemon juice samples were mixed with
0.1% formic acid in 70% methanol solution (1:1) and
sonicated for 15 min. All samples were centrifugated
at 12,000 rpm for 10 min and the supernatant was
injected directly into UHPLC.
For colorimetric assays (sections 2.5, 2.6 and 2.7),

each of the lemon juice samples were diluted using
water by three times prior to the assay.

2.4. UHPLC-QqQ-MS/MS methods

The instrument used for chemical analysis was an
Agilent 1290 Infinity II UHPLC (Agilent Technology,
Palo Alto, CA, USA) hyphenated with 6470 triple
quadrupole mass spectrometry with electrospray
ionization source (ESI) (Santa Clara, CA, USA).
Agilent MassHunter Optimizer (version B.07.00)
was used for standard compound-related parame-
ters optimization, and MassHunter Workstation
software Data Acquisition (version B.08.00) and
Quantitative Analysis (version B.07.01) were used
for data processing. The columns used for com-
pound separation were Prontosil C18 AQ
(2.1 � 150 mm, 3 mm) (for method (a)) and Prontosil
C18 AQ (2.1 � 100 mm, 3 mm) (for method (b) and
method (c)) (Bischoff, Leonberg, Germany).

2.4.1. LC-MS method of CTA
Method (a) was developed and applied for anal-

ysis of CTA. For the chromatographic part, the
mobile phase A was water, and mobile phase B was
65% ACN in water, both mobile phases modified
with 10 mM ammonium acetate with pH adjusted to
9 using ammonium hydroxide. The flow rate was
0.3 mL/min. The gradient was 100% A from 0 to
4 min, 100%e0% A from 4 to 4.5 min, and 0% A from
4.5 to 7.5 min. The column was equilibrated with
100% A for 3 min between injections. The column
was thermostatted at 40 �C. The autosampler was set
to 4 �C. The injection volume was 1 mL. For the MS
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part, high-purity nitrogen was used as the nebu-
lizing, drying and sheath gas in the ionization
chamber. The nebulizer was set at 30 psi, and the
drying gas at 300 �C with flow rate of 13 L/min. The
sheath gas was 250 �C with a flow rate of 12 L/min.
Negative polarity was applied. The scan mode was
dynamic multiple reaction of monitoring (dMRM)
optimized using MassHunter Optimizer as prior
reported [11], with parameters presented in Fig. 1A.

2.4.2. LC-MS method of MA, AA and saccharides
Method (b) was applied for analysis of MA, AA

and saccharides (glucose, fructose and sucrose). The
mobile phase A was 30% ACN in water, and mobile
phase B was 65% ACN in water, both mobile phases
modified with 10 mM ammonium acetate with pH
adjusted to 9 using ammonium hydroxide. The flow
rate was 0.5 mL/min. All other instrument condi-
tions remained the same as method (a). Dynamic
MRM parameters were shown in Fig. 1B.

2.5. LC-MS method of phenolic acids

Method (c) was applied for analysis of phenolic
acids. The mobile phase A was 0.1% formic acid in

water, and mobile phase B was 0.1% formic acid in
ACN. The gradient was 100%A from 0 to 2 min,
100% to 60%A from 2 to 5 min, and kept at 60%A
from 5 to 6 min. The column was equilibrated with
100% A for 1 min between injections. The flow rate
was 0.5 mL/min. The column was thermostatted at
30 �C. All other instrumental conditions remained
the same as method (a). Dynamic MRM parameters
were expressed in Fig. 1C.

2.6. Total polyphenol (TPP) test

The method of TPP assay was based on the pre-
viously reported methods [12e14] with modifica-
tion. 50 mL Folin Ciocalteu's reagent was diluted
with distilled water to 500 mL, then 900 mL diluted
Folin reagent was mixed with 80 mL diluted juice
samples, followed by addition of 400 mL saturated
sodium carbonate solution. The reaction system was
fully vortexed and let stand still for 1 h. 200 mL su-
pernatant was transferred to a 96 multiple well plate
and subject to absorption measurement under
765 nm. As to the calibration curve, ca. 30 mg gallic
acid was dissolved in 5 mL 70% methanol to make
the stock solution, which was then diluted into a

Fig. 1. Representative chromatograms of Sample No. 8 obtained under dynamic multiple reaction monitoring (MRM) mode with analytes' chemical
structures. (A), chromatograms obtained using method (a), (B) by method (b) and (C) by method (c). The retention time was shown in red above each
peak. MRM transitions are noted in form of: precursor ion (fragmentor voltage) / product ion (collision energy). The quantifier ion is noted in green
and the qualifier ion in orange, and the associated voltages are noted in blue.
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series of work solutions with concentrations ranging
from 0.02 mg/mL to 1.6 mg/mL. The TPP content in
samples was expressed as the amount of gallic acid
equivalent (GAE)/mg$mL�1.

2.7. Antioxidant activity

Antioxidant activity assay was based on the
method described by Re et al. [15] with modification.
All the samples were diluted using water by three
times prior to the assay. 31.7 mg ABTS and 8.6 mg
potassium persulfate were dissolved in 10 mL
distilled water. The mixture was then kept in dark-
ness under room temperature for 12e16 h to form
stable radical and diluted using water to an ab-
sorption of ~1.3 at 734 nm. Next, 200 mL ABTS so-
lution was mixed with 20 mL diluted juice samples
and reacted for 15 min under room temperature.
The reaction system was fully vortexed and 200 mL
supernatant was transferred to a 96 multiple well
and the absorption was measured at 734 nm. For the
calibration curve, ca. 12.5 mg standard Trolox was
dissolved in 5 mL pure ethanol as the stock solution
and diluted to series of work solutions with con-
centrations ranging from 0.04 mg/mL to 1.5 mg/mL.
Antioxidant activity was expressed as the amount of
trolox equivalent (TE)/mg$mL�1.

2.8. Ferric reducing antioxidant power (FRAP)
assay

The FRAP assay was based on method reported
by Benzie & Strain [16] with modification. Each
sample was diluted three times using water. First,
3.1 g sodium acetate trihydrate was dissolved in
16 mL glacial acetic acid and pH was adjusted to 3.6
using sodium hydroxide. Then, the solution was
diluted to 1 L by distilled water to make the 300 mM
acetate buffer. Second, 27 mg ferric chloride was
dissolved in 5 mL water to make the ferric chloride
solution. Then 31.2 mg TPTZ was dissolved in 4 mL
40 mM hydrochloric acid solution to prepare the
TPTZ solution. Third, 10 mL acetate buffer, 1 mL
ferric chloride solution, 1 mL TPTZ solution and
1.2 mL water were mixed to prepare the FRAP re-
agent. Fourth, 500 mL FRAP reagent, 225 mL water,
and 25 mL sample were reacted in 1.5 mL micro-
centrifuge tube. Next, the tube was left in dark for
30min. The reaction system was fully vortexed,
200 mL supernatant was transferred to a 96 multiple
well and the absorption was measured at 593 nm.
For the calibration curve, ca. 30 mg vitamin C was
dissolved in 5 mL water as the stock solution and
was then serially diluted to 0.05e1.7 ng/mL as the

work solutions. The FRAP was expressed as the
amount of Vitamin C equivalent (VCE)/mg$mL�1.

2.9. Machine learning

The acquired dataset containing 14 metabolic
features across 77 samples, including 26 AULJ
(sample codes 1e26) (four lemon juice samples with
codes 54e57 purchased from the market were not
included in the category of AULJ), 27 ADLJ (27e53)
and 24 commercially sourced LMND of different
brands (58e81), were subjected to classification
study using machine learning methods [17,18].
Principle component analysis (PCA) and linear
discriminant analysis (LDA) were first applied on the
entire dataset as part of an exploratory data analysis
(EDA) procedure. Then the performance of classifi-
cation prediction was more vigorously tested using
the train-test procedure using five different models,
including LDA, lasso-regularized logistic regression
(LR), Gaussian naïve Bayes (NB), random forest (RF)
and support vector machine (SVM). The entire
dataset was randomly split with 70/30 ratio using
stratified sampling into the training set and testing
set. The training set was normalized into z-score
prior to modelling, and the testing set was normal-
ized based on the means and variances of the
training set. Five-fold cross-validation was applied
for hyper-parameter tuning of LR, RF and SVM. The
five models were then trained using the whole
training set with optimized hyper-parameter if any,
and then tested using the prior held-out testing set.
In addition, to facilitate model application and pre-
diction in practice, an online open-source dashboard
at https://boyuan.shinyapps.io/LemonClassification/
was constructed with models trained on the entire
dataset. R and associated markdown and Shiny web
application were applied for statistical computation
and visualization, script presentation and online
dashboard construction [19]. The associated R script
refers to https://yuanbofaith.github.io/Lemon_Juice_
Classification2/index.html.

3. Result and discussion

3.1. UHPLC-QqQ-MS/MS method optimization

The solvent used for preparation of lemon juice
samples and reference standards was selected based
on preliminary study critical to compound's
response linearity as well as the chromatographic
peak shape, especially for the three organic acids
AA, CTA and MA. As such, a factorial design was
conducted testing the effect of 6 different sample
solvents, including water with or without 0.1%
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respective addition of ammonium hydroxide or
formic acid, and the respective counterparts with
saturated EDTA (Fig. S1). Briefly, MA and CTA
presented ca. 5e20 times higher signal intensity in
basic solvent with 0.1% ammonium hydroxide than
otherwise in acidic sample solvent with 0.1% formic
acid. For the CTA, the linearity and sensitivity was
best in solvent with 0.1% formic acid, and as a result,
it was selecetd as the optimal sample preparation
solvent of method (a). The AA presented nonethe-
less compromised sensitivity and barely any
response linearity at all basic solvent due to accel-
erated degradation. In acidic solvent with 0.1% for-
mic acid, the linearity and sensitivity of AA was
much improved, but still ca. 30% loss was noted
after 4 h storage under 4 �C. The quick loss of AA
could be attributed to the reducing substance-initi-
ated Haber-Weiss oxidation cycle, where metal ions
(Cu2þ or Fe3þ etc.) in the sample reduce oxygen and
emanate the Fenton's reagent, and produce highly
reactive hydroxyl radical [20,21]. Chelation of the
metal ions disrupt the oxidation cycle and preserves
AA stability. Therefore, EDTA as a metal chelator,
was added to the sample solvent and was found
highly effective in maintaining AA stability as well
as significantly restored the response linearity.
Considering the effect on AA and other compounds,
0.1% formic acid in saturated EDTA solutions was
finally selected as the optimal sample preparation
solvent of method (b). In addition, the mobile phase
composition was also optimized by separate exam-
ination of the effect of modifiers ammonium formate
and ammonium acetate at 5, 10 and 25 mM,
respectively with or without pH adjusted to 9 using
ammonium hydroxide. And 10 mM ammonium

acetate with pH adjusted to 9 was selected as the
best mobile phase for method (a).

3.2. Calibration, linearity and sensitivity

Calibration curve parameters, coefficient of
determination (R2), linear range, lower limit of
detection (LLOD) and lower limit of quantification
(LLOQ) of all target analytes are shown in Table S1.
For quantification of organic acids of CTA, MA and
AA, and saccharides of sucrose, glucose and fruc-
tose using method (a), great calibration linearity was
achieved with R2 above 0.993. The LLODs were in
the range of 0.06e10 ng/mL and LLOQs in the range
of 0.2e39.9 ng/mL. For analysis of phenolic acids
using method (b), the calibration R2 was above 0.995
for target compounds. The LLOD and LLOQ were
in the ranges of 0.4e36.1 and 1.2e72.2 ng/mL,
respectively.

3.3. Juice chemical profile and exploratory data
analysis

A representative chromatogram of the target
compounds analyzed in an AULJ (Sample No. 8) is
presented in Fig. 1. The acquired all metabolic fea-
tures for 81 lemon juice and lemonade samples were
visually displayed in Fig. 2 with original data in
Appendix C [22]. We observed that in AUJI samples
the concentration of most phenolic compounds in
the clear type was lower than in the cloudy type
which is presented in Fig. S2. This is likely a result of
using resin for juice filtration to make the clear type,
where phenolic acids can be easily lost by adsorp-
tion to the resin.

CTA

Glucose/Fructose

Sucrose

MA

AA

3,4-di HBA

CFA

4-HBA

3-HBA

p-CA

FA

Antioxidant test

TPP test

FRAP test

content / log10 (ng/mL)
-2 3 85.50.5

Above upper detection limit

Commercially sourced Authentic reference Adulterated reference
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A
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A
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t

Fig. 2. Heatmap of target compounds concentration and chemistry test data in lemon juice. All data are expressed as log10 (ng/ml). Sample codes are
noted on top of the heatmap. Compound abbreviations refer to Fig. 1.
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A primal goal of this work is to separate and
predict the authenticity of lemon juices, AULJ vs.
ADLJ, using machine learning methods based on
the acquired metabolic feature so as to fulfill the
quality control purpose. Meanwhile, it is also of
intellectual interest to investigate how LMND, a
most popular derivative product of lemon juices, are
chemically and statistically differentiated from their
precursors. As part of an exploratory analysis, PCA
were applied to the entire dataset (prior to train-test
split) for visualization of potential separation
(Fig. S3; 3D interactive PCA at https://rpubs.com/
Boyuan/lemon_juice_3D_PCA). Briefly, LMND as a
palatable and drinkable product were most clearly
distinguished from their raw material counterparts
by occupying the far positive direction of the first
principle component (PC1, 38.1% total variance
explained), and also presented more within-group
homogeneity. The two lemon juice groups AULJ
and ADLJ were smeared across the PC1, reflecting
large sample-to-sample variance. Combining both
PC1 and PC2 (the latter counting for 13.4% total
variance), AULJ and ADLJ were roughly separated
by respective occupation of the center and the pe-
ripheral region of the two-dimensional PC space.
Additional separation was also visible along direc-
tion of PC3 (9.9% data variance explained). Different
from PCA which seeks maximum presentation of
total data variance and somewhat passive in group
separation per se, LDA actively seeks the maximum
group separation in terms of Mahalanobis distance
of the group mean, or equivalently the simpler
Euclidean distance on the discriminant scale after
LDA transformation. And unlike PCA which had
nearly half of the information loss in 2D visualiza-
tion and 40% loss in 3D plot in this work, LDA
presented convenient visualization on a 2D plot
without any information loss, and visually rendered
better separation of AULJ, ADLJ and LMND. In
addition, a linear decision boundary could also be
conveniently computed and visualized as shown in
Fig. 3. In sum, both PCA and LDA conveyed positive
message about the separability of the three classes
AULJ, ADLJ and LMND.

3.4. Classification models

Following the exploratory analysis, the classifica-
tion prediction of the three classes was then vigor-
ously tested using the train-cross-validation-test
technique (Fig. 4-A-D). While LDA is an elegant
model for dimension reduction and visualization as
applied above, as a quick and yet simple classifier it
rendered only 63.6 ± 12.9% cross-validation (CV)
accuracy within the training set. The undesirable CV

accuracy to a great extent was caused by the un-
warranted assumption of equal variance-covariance
matrix among all three classes, which is clearly
untrue as manifested by the compact gathering of
LMND but wide dispersion of AULJ and ADLJ on
the LDA plot (Fig. 3) (and also easily diagnosed by
the univariate density distribution plot in Fig. S4).
This directly caused overestimated variance of
LMND, and thus AULJ and ADLJ are particularly
prone to incorrect prediction as LMND when falling
into proximity of the decision boundary with
LMND. The model constructed using the entire
training set showed prediction accuracy on the
testing set of 72.7%. An immediate improvement of
LDA would be to evaluate the covariance matrix
separately for each class, i.e., using quadratic
discriminant analysis (QDA), though this method
was not mathematically feasible given the limited
size of the available dataset. NB is similar to LDA by
both being a generative learning algorithm and use

Fig. 3. Linear discriminant analysis (LDA) of authentic and adulterated
reference lemon juices and commercially sourced lemonade beverages
(from the entire dataset without train-test split). The number on the plot
refers to the sample codes, with font color denoting associated identity
class. The ellipse marks the boundary containing ca. 80% data points of
corresponding class. The grid-background color marks the prediction
boundary. Samples with incorrect prediction are highlighted with a
circle. Sample No. 53, for instance, was actually an adulterated (red
font) sample, but would be incorrectly predicted as a lemonade since it
falls into the green-grids region. Note that predicted green region of
lemonade beverages is rather wide despite the compact distribution of
lemonade samples, less because of the outlier No. 74, but because of the
pooled covariance matrix from authentic and adulterated lemon juices,
which leads to incorrect predictions at the proximity of prediction
boundaries.
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of Bayesian theory, but unlike LDA based on joint
multivariate normal distribution, NB estimates
conditional probability on a univariate basis and
separately for each class. And NB achieved
improved CV accuracy by ca. 10% than LDA, and
86.4% accuracy on the testing set. While NB over-
came the aforementioned variance inequality
among classes, the assumed conditional indepen-
dence among all feature variables is less substanti-
ated (Fig. S5). LR is distinguished from the NB and
LDA by being a discriminative algorithm, and learns
and computes the conditional probability directly
without reliance on Bayesian theory, and is robust to
deviation from normal distribution. In addition,
lasso-regularization helps avoid overfitting. And yet
it only scored 72.7% accuracy on the testing set, a

result comparable to LDA. RF is distinct from all the
other models of this work by being a classification-
tree based ensemble technique, highly efficient in
avoidance of over-fitting, and allows for flexible
characterization of highly non-linear features. RF
achieved accuracy of 81.8 ± 11.1% on the CV set,
correctly predicted all training set when fed back to
the algorithm, and achieved 86.4% accuracy on the
testing set. Radial-kernel based SVM is another
powerful tool, distinguished from the prior ones by
focused optimization of the decision boundary. It
had comparable prediction accuracy on the CV and
testing set as RF. Gauged by prediction performance
on both the validation sets and the testing set, RF
and SVM are two of the most consistent models
balanced with high accuracy.

Fig. 4. Classification prediction of authentic lemon juice (AULJ), adulterated lemon juices (ADLJ) and commercially sourced lemonade beverages
(LMND) in the testing set. (A), five-fold cross-validation accuracy within the training set. (B), accuracy on the training set. (C), accuracy of the testing
set. (D), confusion matrix. (E) sample-wise actual and predicted class label; (F) the predicted percentage probability associated with each class. For
model abbreviations, LDA, linear discriminant analysis; LR, lasso-regularized logistic regression; NB, Gaussian naïve Bayes; RM, random forest;
SVM, support vector machine. Sample codes and associated information refers to Appendix C.
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Apart from prediction of the class label per se, a
shared nice feature of LDA, LR, NB and RF yet
lacking in SVM is their direct prediction of the
probability for each class. Such direct association
with probability prediction is of value of reference
for decision making in real practice. Sample No. 24,
for example, while actually being AULJ, was incor-
rectly predicted by LR as lemondade (Fig. 4-E). The
predicted probability of being lemonade, however,
was only 51% (Fig. 4-F), with a large Gini index
(subtraction of sum of squared probabilities from
one) of 0.61. Such prediction is not a decisive one
given that a confident correct prediction of the class
label is usually supported by a predominant prob-
ability of one class over the others, or equivalently a
small Gini index value measured on the scale of
0e0.67 in case of three-group separation of this
work. Therefore, the prediction result should only
be taken lightly instead of being allowed to play a
role in decision making. While scrutiny of the
probability is an informative way to judge predic-
tion confidence, it is also of importance to interpret
the probability in context of characteristics of each
model, since the same probability value could mean
differently for varied models. For instance, LR
correctly predicted 6 out of 7 AULJ and all 7 LMND
in the testing set, while the associated probabilities
for the correctly predicted samples were only
49e70% and and 54e55%, respectively, a probability
level too conservative and obscure for NB to achieve
confident prediction. Regarding the assignment of
probability to each class, NB is probabilistically the
most sensitive and aggressive, followed by LDA and
RF, with LR being the most conservative (Fig. S6).

3.5. Individual conditional expectation (ICE)
analysis

To make the machine learning black box more
transparent and intuitive, ICE analysis was con-
structed to shed light on the association between the
metabolic features and the model predicted
outcome. ICE analysis is comparable to a simulated
single-factor experiment, where predicted proba-
bilities are made in response to a range of values of
the feature of interest, while keeping the magnitude
of all the other variable unchanged. Such simulation
intuitively reveals how the magnitude of the feature
of interest impacts predicted likelihood. In addition,
the simulation is made for each individual sample in
the training set using their own original values of
unrelated features, hence one simulation trace for
each training example. The multiplicity of simula-
tion on one hand constitutes the many pseudo-rep-
licates, which checks consistency of the investigated

feature, while meantime also unveils possible
interaction between the investigated feature and
other unrelated features [23].
In this work, ICE analysis was conducted to

interpret the RF and LR model, shown in Fig. 5 and
Appendix A2. Malic acid, for instance, was found an
effective marker compound in distinguishing LMND
from AULJ and ADLJ. When MA content increased
above ca. 1e2 mg/mL, the RF-predicted probability
for simulated training examples being LMND
rapidly decreased regardless of the condition of all
other features, manifested by the almost unanimous
L-shape curve in A1-3 (of Fig. 5, same figure for
following discussion). Accompanied with the
decrease in LMND probability, the ADLJ and AULJ
probability rapidly increased (A1-1 and A1-2).
Similar pattern is also seen in citric acid and ascorbic
acid. This was expected since LMND as a pleasant
beverage tends to contain less sourness-inducing
compounds than the lemon juice, which as a raw
material of LMND is too sour to drink in its original
form. Mathematically, the RF predicted probability
reflects the density distribution of the feature
magnitude of each class. RF not only reflected the
pattern of significant changes in the density distri-
bution but also captured nuance details and adjusted
the probability prediction accordingly. For example,
when the MA content was higher than 20 mg/mL,
there were more AULJ samples than ADLJ (A2, re-
gion b), and accordingly the predicted probability of
ADLJ stepped down and the probability of AULJ
simultaneously jumped up (A1-1 and A1-2, region
b). For compound 4-HBA, in like manner, the falling
cascade of ADLJ probability in region d and e (B1-1)
respectively mirrored the valley d and sliding slope e
of the density distribution (B2). This sensitive
adjustment in probability prediction shows that RF
possess highly flexible non-linear capability, a
desirable feature lacking in some of other models
such as LR, which modeled the probability as a more
defined sigmoid curve (Fig. S7).
Feature interaction was observed and this can

complicate model interpretation. In the range of MA
content of 5e20 mg/mL and for the predicted prob-
ability of ADLJ, majority of the simulation traces
derived from actual ADLJ samples presented much
flat or slightly concave-down profile, while a bunch of
traces from actual AULJ slightly concaved up (noted
with asterisk, A1-1). Such differences were caused by
the difference in the other variables separately char-
acteristic of ADLJ andAULJ, which altered the way in
which prediction probability would change in
response to alteration of the MA content.
Another informative phenomenon unveiled by

RF-ICE plot is that the identity of all simulated
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samples derived from the actual ADLJ were pre-
dicted as ADLJ (the associated probabilities were
above at least 50%), regardless of the tested feature
and associated magnitude. The same rule also
applied to AULJ and LMND. It showed that all
samples in the original training set were correctly
predicted, showing the high flexibility and learning
capacity of RF model. More importantly, it also
suggested that there is no single metabolic feature
that solely determines the identity of a sample, and
that identification of an unknown sample must be
based on the complete profile of all metabolic fea-
tures investigated.

3.6. R shiny online dashboard

To facilitate convenient application of machine
learning for identity prediction among AULJ, ADLJ
and LMND without coding, an online open-source

dashboard was constructed based on R Shiny
application. While all aforementioned modelling
was based on the training-testing technique, for
practical prediction the prior training and testing
sets were merged together to train the final models.
Built upon the trained models, the R Shiny appli-
cation automatically predicts the identity and asso-
ciated probabilities of unknown samples. The
training database could be downloaded as template
and then updated and uploaded back to the appli-
cation for prediction of new samples.
Apart from making predictions per se, this

application could also serve as a convenient
analytical tool to investigate the model performance.
Under the functionality of single sample prediction
(tab 1), for example, incremental adjustment of the
input feature values via the slider-bars animatedly
updates the predicted probabilities associated with
each class, which generates a dynamic version of the
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Fig. 5. Interpretation of random forest model with individual conditional expectation (ICE) analysis (A1 and B1) and associated density plots (A2 and
B2). Shown is the effect of two metabolic features of malic acid (MA) and 4-hydroxybenzoic acid (4-HBA) on the predicted probability of authentic
lemon juices (AULJ), adulterated lemon juices (ADLJ) and commercially sourced lemonade beverages (LMND). In ICE plot, each trace is derived from
one sample in the training set. The content magnitude of MA (A1) and 4-HBA (B1) is forced to iterate over a range of grid values (n ¼ 100) while
keeping all other variable unchanged. The derived new samples are fed into the trained model to predict the probability associated with each class. The
probability of being ADLJ, AULJ and LMND is displayed in separated facets/panels (e.g., A1-1, A1-2 and A1-3), and within each facet, the trace color
refers to the actual identity of the training sample from which the simulation trace is derived. The barcode on the abscissa of the ICE plots represent
the feature density distribution in the original training set. The density plot (A2 and B2) shows the feature distribution density of the entire dataset
prior to train-test split. The density plot inset displays a closeup for AULJ and ADLJ. Associations between the density profile and probability
prediction is marked with small letters (aeg). Additional ICE analysis refers to Appendix A2.
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static ICE analysis. Meanwhile, the dynamic reali-
zation of ICE analysis can be readily extended to
multiple features as well. For another instructive
usage, this application helps simulate how robust
models are to the measurement error sourced from
upstream data acquisition. Under the batch predic-
tion functionality (tab 2), prior to upload of new
data, the default presents the predicted result when
the training database is fed back to the built models.
The training set can be downloaded and updated
and then fed back as new data to the models.
When±20% uniformly distributed random noise is
added to the training database as simulation of the
error occurring during data collection, ca.
94.8e98.7% of prediction remained the same; when
±50% aggressive noise is added, ca. 85.7e97.4%
prediction remains unchanged. RF and SVM were
the least susceptible to noise addition, and 98.7 and
97.4% of prediction remained untouched with ±50%
noise (Fig. S8). This simulation suggests that the
developed models especially RF and SVM are rather
robust to the error sourced from data acquisition.

4. Conclusion

In this study, sensitive and reproducible UHPLC-
QqQ-MS/MS methods were developed, and quan-
titative analysis of 14 metabolic features using the
optimized LC-MS methods as well as colorimetric
assays was achieved. Parameters in relation to
dilution solvent, LC and MS conditions were opti-
mized. For quantification of organic acids of CTA,
MA and AA, calibration linearity was greatly
improved when using 0.1% formic acid in saturated
EDTA solution to prepare and dilute standard so-
lution. The possible mechanism can be proposed to
explain the improvement is EDTA can inhibit the
Haber-Weiss oxidation cycle as a metal-chelator to
protect those organic acids from degradation. The
analytical methods developed were then applied to
81 lemon juices samples. For classification of AULJ,
ADLJ and LMND, five different models LDA, NB,
LR, RF and SVM were constructed, with RF and
SVM being two of the most robust models. In
particular, RF with its ensemble algorism flexibly
captured the characteristic nuances of the density
distribution of the metabolic features of each class
and associates the density distribution with the
predicted probability as revealed by ICE analysis.
Applying the established models, the constructed
online dashboard would serve as a convenient and
useful tool to facilitate identification of lemon juice
authenticity and distinction with the lemonade
beverages and provides a robust new approach to
detect aduleration and improve product quality.
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