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Abstract

Aflatoxin B1, a major global food safety concern, is produced by toxigenic fungi during crop growing, drying, and
storage, and shows increasing annual prevalence. This study aimed to detect aflatoxin B1 in chili samples using
ATReFTIR coupled with machine learning algorithms. We found that 83.6% of the chili powder samples were
contaminated with Aspergillus and Penicillium species, with aflatoxin B1 levels ranging from 7.63 to 44.32 mg/kg.
ATReFTIR spectroscopy in the fingerprint region (1800¡400 cm¡1) showed peak intensity variation in the bands at 1587,
1393, and 1038 cm¡1, which are mostly related to aflatoxin B1 structure. The PCA plots from samples with different trace
amounts of aflatoxin B1 could not be separated. Vibrational spectroscopy combined with machine learning was applied
to address this issue. The logistic regression model had the best F1 score with the highest %accuracy (73%), %sensitivity
(73%), and %specificity (71%), followed by random forest and support vector machine models. Although the logistic
regression model contributed significant findings, this study represents a laboratory research project. Because of the
peculiarities of the ATReFTIR spectral measurements, the spectra measured for several batches may differ, necessitating
running the model on multiple spectral ranges and using increased sample sizes in subsequent applications. This
proposed method has the potential to provide rapid and accurate results and may be valuable in future applications
regarding toxin detection in foods when simple onsite testing is required.

Keywords: Aflatoxin B1, Attenuated total reflection�Fourier transform infrared spectroscopy (ATReFTIR), Chili powder,
Machine learning, Principal component analysis

1. Introduction

T he chili pepper (Capsicum spp.) is the most
widely used spice and condiment in the world

for its pungency and for adding special flavor to
many cuisines. Chilis are consumed as fresh unripe
fruits, ripened (red or other colors), and dried [1]. In

Thailand, the average consumption of Thai chilis
was 5 g/d, as surveyed by the Ministry of Public
Health [2]. A considerable concern regarding chili
consumption is the reported high prevalence of
aflatoxin B1 (AFB1) in chili powder, which was esti-
mated to range from 96.7% to 100% from 2014 to
2016 [3,4].
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Aflatoxins are a group of highly mutagenic, tera-
togenic, and carcinogenic mycotoxins produced by
certain species of fungi (including the genera
Aspergillus, Penicillium, and Fusarium) under favor-
able conditions before and after harvest and during
storage [5]. The presence of mycotoxins in food and
feed is a major global food safety issue, as they
contribute to potential health hazards to humans
and animals. Exposure to aflatoxins is an important
risk factor for the development of hepatocellular
carcinoma [6]. The toxic effects of aflatoxins mainly
depend on the exposure levels and amount of food
consumed and may extend from acute infirmity or
death to chronic problems [7]. The four types of
aflatoxins produced in nature belong to a group of
difuranocoumarins and include AFB1, aflatoxin B2

(AFB2), aflatoxin G1 (AFG1), and aflatoxin G2 (AFG2)
[8,9]. AFB1 is the most dominant toxin form in
agricultural products and is classified as a Group I
compound (carcinogenic to humans) by the Inter-
national Agency for Research on Cancer [10,11].
Currently, aflatoxins induce approximately 4.6% of
the total annual hepatocellular carcinoma cases and
28.2% of all cases of hepatocellular carcinoma
globally, and more than 55 billion people worldwide
have been exposed to uncontrolled toxin contami-
nation [12].
Several technologies have been explored for the

detection of AFB1 in foods, including thin-layer
chromatography (TLC), high-performance liquid
chromatography (HPLC), and enzyme-linked
immunosorbent assay (ELISA) [13,14]. Despite
yielding accurate results, these procedures are
generally time-consuming, sample-destructive,
costly, and require expert staff. These conditions are
largely unattainable within the massive scope of
non-destructive screening and real-time and on-site
analysis [15]. Rapid and accurate techniques to
detect AFB1 in foods are thus needed urgently.
Infrared (IR) spectroscopy comprises rapid and non-
destructive techniques that require minimal
technical training and sample preparation, are not
labor-intensive, and can be performed using
relatively minute quantities of chemicals [16].
Attenuated total reflectioneFourier transform IR
(ATReFTIR) spectroscopy is a frequently used
vibrational spectroscopic technique that has been
experimentally applied for identification of multiple
samples. Recently, machine learning has gained
popularity and has been employed in several fields,
such as pattern recognition, object detection, text
interpretation, and different research areas [17e19].
Previous studies have applied vibrational spectros-
copy combined with machine learning algorithms to
discriminate various samples, including sera from

breast cancer patients against healthy sera [20],
pharmaceutical polymorphs [21], and biofluids [22].
Thus, vibrational spectroscopy combined with ma-
chine learning algorithms is a promising alternative
technique to detect AFB1 in foods.
In this study, we used ATReFTIR spectroscopy to

investigate contamination of chili samples with
AFB1 and aimed to develop a model to discriminate
AFB1 spectra using chemometrics. The unsuper-
vised and machine learning algorithms, principal
component analysis (PCA), support vector machine
(SVM), logistic regression, k-nearest neighbors, and
random forest (RF) were established and evaluated
by calculating F1 scores, %accuracy, %sensitivity,
and %specificity.

2. Materials and methods

2.1. Fungal strains

Aflatoxin-positive Aspergillus parasiticus (ATCC®
26691™) was purchased from Biomedia, Thailand.
The strain was inoculated onto Czapek Dox medium
according to the ATCC product sheet instructions.

2.2. Instruments and chemicals

An FTIR spectrometer (TENSOR II; Bruker Optics,
Ettlingen, Germany) equipped with a platinum ATR
accessory was used. The MaxSignal Aflatoxin B1

ELISA kit was purchased from PerkinElmer Inc.
(Texas, USA). The AFB1 standard was purchased
from Merck (USA). A 365-nm UV lamp was pur-
chased from China. Peptone (bacteriological),
Dichloran Glycerol Medium Base, and Czapek Dox
agar were purchased from Himedia (India). Com-
mercial coconut milk was purchased from Thailand.

2.3. Provision of chili powder samples

From September 2020 to April 2021, 73 chili
powder samples were randomly collected from four
merchants and vendors in Khon Kaen province,
Thailand. The majority (35 samples) were obtained
from the Bang-Lampu market (market 1), 20 from
the Non-Maung market (market 2), 11 from the
Kumhai market (market 3), and 7 from the Ban Non-
Than market (market 4). The samples were packed
in sterile plastic bags and kept at 2e8 �C until
analysis.

2.3.1. Fungal isolation from chili powder samples
Fungal isolation followed the ISO 21527-2 stan-

dard protocol. Briefly, 10 g of each chili powder
sample was suspended in 90 mL of 0.1% (w/v)
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peptone water and mixed vigorously. The initial
suspension was serially diluted to a final concen-
tration of 0.01 g/mL using 0.1% (w/v) peptone water.
Each dilution of chili powder suspension was spread
on Dichloran 18% glycerol (DG18) agar plates and
incubated at 25 �C for 5 d, before counting the
fungal colonies. The total fungal count of each
contaminated sample was expressed as colony-
forming units per sample g (CFU/g).

2.3.2. Screening of aflatoxin-producing fungal species
using UV fluorescence
Screening of aflatoxin-producing fungi in the chili

powder samples was based on the fluorescence of
positive colonies after exposure to 365-nm UV ra-
diation. The fungi were incubated in coconut agar
medium using the modified formula described by
Lin and Dianese [23]. The isolated Aspergillus strains
were placed in the center of coconut agar medium
and cultured for 3 d at 25 �C. After incubation, the
presence or absence of blue or blue-green fluores-
cence in the agar surrounding the colony was
evaluated as indicative of aflatoxin-producing fungi,
using the A. parasiticus strain ATCC® 26691™ as a
positive reference.

2.3.3. Identification of fungal species
Aspergillus and Penicillium species were isolated on

DG18 plates and identified using lactophenol cotton
blue stain. The taxonomic classification was done
following the Manual of Identification, as detailed
in Description of Medical Fungi (https://www.
adelaide.edu.au/mycology/ua/media/1596/fungus3-
book.pdf). Isolated colonies of identified Aspergillus
species were subcultured on Czapek Dox agar and
incubated at 25 �C for 3 d to study their morpho-
logical characteristics. Yellow-green colonies
growing on Czapek Dox agar were identified as
Aspergillus flavus and dark green colonies as A. par-
asiticus. The incidence of each fungal species was
calculated as follows:

Species occurrence (%) ¼ (number of species
isolates /total number of isolates) � 100

2.4. Quantification of AFB1 content using
competitive ELISA

AFB1 content was assessed using competitive
ELISA following the manufacturer's instructions.
Briefly, 5 g of chili powder sample was subjected to
extraction with 25 mL of 70% v/v methanol in water.
The chili powder extraction was centrifuged at
4000�g for 10 min to collect the supernatant that
contained AFB1. The levels of AFB1 in the

supernatant were measured in duplicate using the
competitive ELISA kit. The absorbance was set at
450 nm for the primary filter and at 630 nm for an
additional differential filter to decrease background
measurements. The optimum dilution of the anti-
body to ensure maximum sensitivity was deter-
mined by the displacement values of B/B0, where B
is the extinction coefficient of the sample containing
toxins and B0 of the sample without toxins, derived
from the slope of the calibration curves. Samples
containing AFB1 in concentrations below the limit of
<20 mg/kg were considered uncontaminated [14].

2.5. ATReFTIR spectroscopy for AFB1 analysis

The methanolic extract of the chili powder was
centrifuged at 1509�g for 15 min. Six microliters of
the supernatant were analyzed using ATReFTIR
spectroscopy over the surface of an ATReFTIR
sampling window (diameter 3 mm) and allowed to
dry for 3 min in air at room temperature. After
complete drying, the transparent film was examined
to determine absorbance at a spectral resolution of
8 cm�1 and 64 scans in the 4000�400 cm�1 spectral
range. Spectral data were collected from five repli-
cates for each sample.

2.6. ATReFTIR spectral preprocessing and
unsupervised analysis: PCA

PCA allows dimensionality reduction and simpli-
fication of datasets with multiple variables to in-
crease interpretability and minimize information
loss [24]. The spectral data, raw (with 17 smoothing
points using the Gaussian filter algorithm and
Rubberband baseline correction) and preprocessed
(with 2nd derivative with 17 smoothing points using
the SavitzkyeGolay algorithm and unit vector
normalization), were used for PCA in the following
six spectral ranges: (i) 4000�400 cm�1, (ii)
2950�2800 cm�1, (iii) 1700�900 cm�1, (iv)
1450�900 cm�1, (v) 2950�2800 þ 1700�900 cm�1,
and (vi) 2950�2800 þ 1450�900 cm�1 using the Or-
ange software (version 3.35.0, University of Ljubl-
jana, Slovenia).

2.7. Establishing advanced machine learning
models

Different machine learning algorithms were
employed to evaluate classification performance
with the parameters listed in Table 1. The calibra-
tion set was validated using the leave-one-out
method. Each sample was sequentially omitted from
the calibration set and the machine learning model
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(determined based on the reduced dataset) was
used to predict contamination with AFB1 in the
omitted sample. The predictive model with an F1
score value approaching 1 was considered accept-
able [25]. To avoid overly optimistic modeling, no
technical replicates from the same sample were
included in the training or test sets, i.e., the technical
replicate trap. The F1 score was calculated as follows:

F1 score¼

0
B@ TP
TPþ 1

2 ðFPþ FNÞ

1
CA

Where TP is the true positive value, FN is the
false negative value, and FP is the false positive
value.

2.8. Method evaluation and calculation

The predictive results of each model are presented
in Table 2 for comparison of the actual AFB1 levels
in the chili powder samples and the index test re-
sults. Percent accuracy, sensitivity, and specificity
were calculated using the following formulas:

%Accuracy¼
�

TPþ TN
TPþ FPþ FNþ TN

�
� 100

% Sensitivity¼
�

TP
TPþ FN

�
� 100

% Specificity¼
�

TN
FPþ TN

�
� 100

Where TP is the true positive value, FP is the false
positive value, FN is the false negative value, and
TN is the true negative. The evaluation results of %
accuracy, %sensitivity, and %specificity were
expressed as the average value over classes (AFB1

contaminated and uncontaminated).

3. Results

3.1. Incidence of AFB1 in the chili powder samples

The occurrence of toxigenic fungal contamination
in chili powder gathered in Khon Kaen province is
displayed as a heatmap (Fig. 1), with the levels of
total fungal contamination ranging from 1.0 � 102 to
3.5 � 104 CFU/g (shift from blue to red in the
heatmap). The results showed that 83.6% (61 of 73)
of the chili powder samples contained toxigenic
fungi. The most frequently contaminating fungi
were Aspergillus species (93.4%; 57 of 61 samples),
with more than one species per sample occasionally
detected. We identified A. flavus in 68.2% (22 of 61),
A. parasiticus in 55.8% (43 of 61), and Aspergillus niger
in 87.0% (46 of 61) of the samples. Penicillium species
were present in 6.6% of the samples (4 of 61;
Table 3). Only 16.4% (12 of 73) of the chili samples
were found to be uncontaminated.

3.2. Detection of AFB1 with ELISA

Aflatoxin production was evaluated using the
competitive ELISA method. The levels of AFB1 were
calculated following formula Y ¼ �0.158ln(x) þ
0.2281 (R2 ¼ 0.99) according to the standard curve
(Fig. S1). The AFB1 levels in the chili powder extracts
were in the range of 7.63e44.32 mg/kg, with levels
exceeding the limit of 20 mg/kg being considered
contaminated by the US Food and Drug Adminis-
tration (FDA). Therefore, the assessment of AFB1

levels led to division into contaminated (57.5%) and
uncontaminated (42.5%) samples, as presented in
Table 4.

3.3. Analysis of AFB1 using ATReFTIR spectroscopy

The presence of AFB1 in the chili powder extracts
was assessed using ATReFTIR spectroscopy in the
spectral range 4000�400 cm�1. Variations in terms
of absorbance peaks were apparent in the finger-
print region (1800�400 cm�1), as shown in Fig. 2.
Higher absorbance peak was observed in the
contaminated (red line) than in the uncontaminated

Table 1. Parameters for advanced machine learning analysis.

Machine learning
models

Parameter

Support vector
machine

Radial basis function (RBF)
Cost
Regression loss epsilon
Numerical tolerance
Iteration limit

1.00
0.10
0.0010
100

Logistic regression Regularization type
Cost strength

Ridge
1

K-nearest neighbor Number of neighbors
Metric
Weight

5
Euclidean
Uniform

Random forest Number of trees 10

Table 2. Prediction performance between reference and index tests.

Index test
(Predicted value)

Actual value

AFB1

contaminated
AFB1

uncontaminated

AFB1 contaminated TP FP
AFB1 uncontaminated FN TN

Chili powder samples with aflatoxin B1 levels <20 mg/kg were
considered uncontaminated.
Definitions: TP, true positive; FP, false positive; FN, false negative;
TN, true negative.
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samples (black line). The fingerprint region shows
variation in the contaminated and uncontaminated
samples in the bands at 1587, 1393, and 1038 cm�1.
The ATReFTIR spectra showed a band at
2925e2853 cm�1 for aromatic (¼CH), ¼CeH, C¼C,
and phenyl structures; 1706 cm�1 for C¼O;
1587 cm�1 for aromatic ring (CeC) and C¼C
stretching; 1393 cm�1 for eCeH bending; and
1038 cm�1 for ¼CeOeC or symmetric bending of

phenyls; these are mostly related to the AFB1

structure.

3.4. AFB1 spectral discrimination using unsupervised
analysis: PCA

The spectra acquired from the 31 uncontaminated
and 42 contaminated chili powder samples were
preprocessed and used to investigate sample clus-
tering to help determine sample similarity and
dissimilarity. The PCA plots from the spectral re-
gions 1450�900 cm�1 exhibited the highest
explained variance (>99%) among other spectral
regions (Fig. 3). However, the discriminatory power
of PC1 (x-axis) versus other components ( y-axis)
was unclear among the contaminated (red dots) and
uncontaminated (green squares) AFB1 samples in
the spectral range 1450�900 cm�1.

3.5. Establishing advanced machine learning models

Vibrational spectroscopy combined with machine
learning algorithms was used to classify AFB1 levels
in chili powder samples using predictive models. As
presented in Table 5, based on the F1 scores deter-
mined using machine learning algorithms in six
spectral ranges, the range 1700�900 cm�1 contrib-
uted to better F1 score values than the combined
spectra 2950�2800 þ 1700�900 cm�1 and other
ranges. The raw spectral data obtained by pre-
processing 17 smoothing points with Rubberband
baseline correction and vector normalization were
suitable for use with the predictive models. The lo-
gistic regression model based on these raw spectral
data resulted in the highest F1 score (0.725), with 73%
accuracy, 73% sensitivity, and 71% specificity, fol-
lowed by RF (F1 score 0.657, 66% accuracy, 66%

Fig. 1. Heatmap of total fungal contamination using the ISO 21527-2 method. A blue-to-red shift corresponds to increasing fungal concentration
(colony-forming units per g [CFU/g]). Samples with <10 CFU/g were considered uncontaminated.

Table 3. Evaluation of fungal contamination using the ISO 21527-2
protocol.

Interpretation using
the ISO 21527-2
protocola

No. of
contaminated or
uncontaminated
samplesb

Species
occurrence (%)c

Contaminated
AFB1 samples

83.6% (61/73) Aspergillus spp. (93.4%)
A. flavus (68.2%)
A. parasiticus (55.8%)
A. niger (87.0%)
Penicillium spp. (6.6%)

Uncontaminated
AFB1 samples

16.4% (12/73) e

-: not detected.
a The maximum acceptable value for chili powder samples

contaminated with fungal was <10 CFU/g.
b Number of uncontaminated samples or contaminated sam-

ples/number of tested samples.
c (Number of species isolates)/(total number of isolates) � 100.

Table 4. Assessment of contamination of chili powder samples with
aflatoxin B1 using competitive ELISA.

Uncontaminated
samples

Contaminated
samples

Concentration of
aflatoxin B1

(mg/kg)

7.63e19.89 20.22e44.32

% frequency
distribution

42.5% (31 of 73) 57.5% (42 of 73)
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sensitivity, and 64% specificity) and SVM (F1 score
0.645, 66% accuracy, 66% sensitivity, and 60%
specificity) in the spectral range 1700�900 cm�1

(Table S1 and Table S2). These results indicate that
logistic regression was suitable for detecting AFB1 in
the chili powder samples.

4. Discussion

Toxigenic fungi can attack and colonize chilies,
grains, peanuts, and dairy products during crop
production, drying, and storage. Warm tempera-
tures and high humidity are crucial factors that in-
fluence fungal growth and mycotoxin production.
Aflatoxin contamination can be divided into two

phases: during early crop development and after
development, where contamination increases until
consumption [26]. Our findings revealed contami-
nation with toxigenic fungus in 83.6% of the chili
powder samples collected in Khon Kaen province.
The contaminating fungi were most commonly of
the Aspergillus species (93.4%), including A. flavus, A.
parasiticus, and A. niger, followed by Penicillium
species (6.6%). These two fungal species are typi-
cally present in spices collected from various loca-
tions [27]. It has been reported that a significant
percentage of chili powder samples (86.7%) and
dried chili pods (96.7%) are contaminated with
fungi. The most common strains of fungi found in

Fig. 2. Averaged ATReFTIR spectra profiles from chili powder samples containing various aflatoxin B1 (AFB1) levels. The contaminated (red) and
uncontaminated (black) samples were collected in the spectral range of 4000�400 cm�1.

Fig. 3. Principal component score plot representing clusters of AFB1 levels contained in chili powder samples at the wavenumber range of
1450�900 cm�1 with 99% of explained variance.
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these samples include Aspergillus section Flavi,
Aspergillus section Nigri, Penicillium spp., Aspergillus
section Aspergillus, Aspergillus section Circumdati,
and Rhizopus [28]. Aflatoxins are naturally occurring
toxins that can be found in certain types of food,
such as peanuts, corn, and other grains. Among the
different types of naturally occurring aflatoxins, B
aflatoxins (AFB1 and AFB2) are more prevalent in
chilis and peanut products than G aflatoxins [9,29].
Here, we used ATReFTIR spectroscopy as a rapid

and accurate strategy for the detection of AFB1. The
ATReFTIR spectroscopy results revealed variations
in the fingerprint region (1800�400 cm�1), with
higher absorbance peaks for the contaminated than
the uncontaminated samples (Fig. 2). These differ-
ences are attributed to the interaction between the
biochemical components in the samples and their
amounts. Our findings show absorbance peak vari-
ation for the bands at 1587, 1393, and 1038 cm�1,
which are mostly related to the AFB1 structure. The
band at 1062�1000 cm�1 has the strongest associa-
tion between absorbance responses and aflatoxin
levels [30]. The contamination of aflatoxins includes
B1, B2, G1, and G2 subtypes exhibits the FTIR
characteristic bands at ~3000e2900 cm�1 and
~1800e900 cm�1, therefore the spectral rationing

exposed minor differences along each pure subtype
standards [31]. Since overlapping spectral patterns
were observed in the major peaks, spectral
discrimination of aflatoxin subtypes cannot be con-
ducted. Hence chosen spectral range cannot rule out
the contamination of other subtypes so the limita-
tion should be concerned. However, the qualitative
and quantitative differentiation between aflatoxin
subgroups can be identified by using chemometric
model of each standard subtype [31]. ATReFTIR
spectroscopy and chemometrics were combined to
categorize the uncontaminated and contaminated
chili powder samples. The PCA score plots for AFB1

contamination at different trace amounts could not
be separated (Fig. 3) likely because the absorption
peaks for samples with trace amounts of aflatoxin
subtypes were barely discernible. Thus, PCA failed
to discriminate the levels of AFB1 in the chili
samples.
Vibrational spectroscopy combined with machine

learning was applied to address these issues and to
classify samples that contained various AFB1 levels.
The logistic regression model resulted in the best F1
score with the highest %accuracy, %sensitivity, and
%specificity (Table 5) followed by RF and SVM. A
previous study demonstrated that the RF model

Table 5. Predictive models for evaluation of aflatoxin B1 levels using advanced machine learning.

Spectral preprocessing PCA Spectral region (cm�1) F1 score

(% explained variance) SVM LR kNN RF

17 smoothing points þ Rubberband
baseline correction

92% 4000e400 0.529 0.489 0.532 0.508
99% 2950e2800 0.531 0.531 0.671 0.581
99% 1700e900 0.497 0.618 0.609 0.548
99% 1450e900 0.569 0.587 0.543 0.541
98% 2950�2800 þ 1700�900 0.525 0.658 0.667 0.583
98% 2950�2800 þ 1450�900 0.612 0.605 0.544 0.513

17 smoothing points þ Rubberband
baseline correction þ Vector
normalization

89% 4000e400 0.531 0.489 0.569 0.562
99% 2950e2800 0.621 0.605 0.494 0.544
98% 1700e900 0.645 0.725 0.577 0.657
99% 1450e900 0.602 0.609 0.583 0.521
97% 2950�2800 þ 1700�900 0.571 0.670 0.637 0.584
98% 2950�2800 þ 1450�900 0.571 0.590 0.544 0.541

2nd derivatives þ 17 smoothing
points þ Rubberband baseline

50% 4000e400 0.571 0.574 0.576 0.612
95% 2950e2800 0.600 0.534 0.549 0.497
86% 1700e900 0.569 0.541 0.576 0.537
88% 1450e900 0.629 0.640 0.576 0.501
84% 2950�2800 þ 1700�900 0.576 0.588 0.565 0.449
83% 2950e2800 þ 1450�900 0.600 0.621 0.501 0.525

2nd derivatives þ 17 smoothing
points þ Rubberband
baseline þ Vector normalization

50% 4000e400 0.571 0.565 0.547 0.457
92% 2950e2800 0.617 0.587 0.632 0.655
83% 1700e900 0.576 0.548 0.587 0.640
86% 1450e900 0.600 0.565 0.547 0.543
87% 2950�2800 þ 1700�900 0.605 0.553 0.569 0.492
86% 2950�2800 þ 1450�900 0.514 0.593 0.553 0.469

Definitions: PCA, principal component analysis; SVM, support vector machine; LR, logistic regression; kNN, k-nearest neighbors al-
gorithm; RF, random forest.
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achieved high specificity (>80%) and sensitivity
(76.2%) for AFB1 detection in maize samples [32].
However, this preliminary study demonstrated the
choice of spectral preprocessing procedures and
machine learning algorithms to identify AFB1

contamination. Improving the test accuracy by
increasing the sample size and performing algo-
rithm tuning may be eligible for a routine approach
[33]. Moreover, a simple sample handling procedure
also needed for routine application. The study of
Sulistiawan A. et al. evidenced the high perfor-
mance of the PLS model from peanut paste spectra
[34].
In conclusion, our study demonstrated the appli-

cation of a robustness tool to identify the contami-
nation of aflatoxin in chili powder samples.
Additionally, the spectral preprocessing procedures
(17 smoothing points, rubber band baseline correc-
tion, vector normalization at 1700e900 cm�1) and
integration of machine learning for pattern-based
modeling executed the impact of the screening
method. The combination of logistic regression al-
gorithm for a spectral analysis accounted 73% ac-
curacy, 73% sensitivity, and 71% specificity. The
limitations of our study included 1) low sample size
for machine learning, 2) fine-tuning for the best
parameters, and 3) application of aflatoxin subtype
standards and chemometric model for subtype
identification. Therefore, test performance
improvement could be conducted by increasing the
sample size and performing algorithm tuning which
may be eligible for a routine approach. The estab-
lishment of chemometric models for identifying of
each subtype of aflatoxin (B1, B2, G1, and G2) could
be conducted using the standard of individual
subtypes.
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Appendix

Supplementary Figure S1. Competitive ELISA standard curve for afla-
toxin B1 (AFB1). The data represent the mean of duplicates. The graph
was generated by plotting the percentage of binding (B/B0) against toxin
concentration (mg/kg).

Supplementary Table 1. Evaluation results using a logistic regression
model for the spectral region 1700e900 cm-1.

Predictive
value

Actual value

Contaminated
AFB1

Uncontaminated
AFB1

Contaminated
AFB1

33 11

Uncontaminated
AFB1

9 20
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Supplementary Table 2. Performance of predictive models in different spectral regions for aflatoxin B1 levels.

Preprocessing
methods

algorithms Spectral region (cm-1)

4000e400 2950e2800 1700e900 1450e900 2950e2800 ＋ 1700
e900

2950e2800 ＋ 1450
e900

%Acc %Sen %Spec %Acc %Sen %Spec %Acc %Sen %Spec %Acc %Sen %Spec %Acc %Sen %Spec %Acc %Sen %Spec

17 smoothing
points þ RBB

SVM 56 56 48 55 55 49 52 52 45 60 60 52 53 53 49 63 63 57
LR 49 49 46 55 55 49 62 62 61 59 59 56 66 66 65 60 60 61
kNN 53 53 50 67 67 66 62 62 57 56 56 50 67 67 64 55 55 51
RF 52 52 47 59 59 55 56 56 51 55 55 51 60 60 54 52 52 48

17 smoothing
points þ RBB þ VN

SVM 58 58 48 63 63 58 66 66 60 64 64 55 59 59 53 59 59 53
LR 49 49 46 62 62 57 73 73 71 62 62 57 67 67 65 59 59 58
kNN 58 58 53 49 49 47 60 60 53 60 60 54 64 64 60 55 55 51
RF 56 56 54 55 55 51 66 66 64 52 52 50 59 59 55 55 55 51

SD þ 17 smoothing
points þ RBB

SVM 59 59 53 62 62 56 60 60 52 66 66 58 59 59 54 62 62 56
LR 58 58 55 53 53 51 55 55 51 64 64 61 60 60 55 63 63 58
kNN 58 58 56 55 55 53 59 59 54 59 59 54 58 58 53 51 51 47
RF 62 62 58 51 51 46 55 55 50 51 51 47 45 45 42 53 53 49

SD þ 17 smoothing
points þ RBB þ VN

SVM 59 59 53 63 63 58 59 59 54 62 62 56 62 62 57 53 53 47
LR 58 58 53 59 59 56 56 56 51 58 58 53 56 56 52 60 60 56
kNN 55 55 52 63 63 64 59 59 56 55 55 52 58 58 53 56 56 52
RF 48 48 41 66 66 63 64 64 61 56 56 50 49 49 47 48 48 43

Definitions: %Acc, %accuracy; %Sen, %sensitivity; %Spec, %specificity; SVM, support vector machine; LR, logistic regression; kNN, k-nearest neighbors algorithm; RF, random forest;
SD, 2nd derivative spectra; RBB; Rubberband baseline correction; VN, vector normalization. The evaluation results of %accuracy, %sensitivity, and %specificity were expressed as the
average value over classes (contaminated AFB1 and uncontaminated AFB1 samples).
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