•  
  •  
 

Abstract

Fucose is one of important residues of recognition pattern for many immune cells. In this study, we characterized bioactive fucose-containing acidic polysaccharides from submerged fermentation of Agaricus blazei Murill. We obtained the polysaccharides through a cell-based activity-guided strategy, and used carbohydrate recognition monoclonal antibodies based Enzyme-Linked Immuno Sorbent Assay (ELISA) along with methylation and NMR analyses to investigate the structural characteristics of the polysaccharides. The polysaccharides had Mw of 3.5 × 10 5 Da. The major sugars were L-fucose, L-arabinose, D-galactose, D-xylose, and D-galacturonic acid in the molar ratio of 6.4, 15.5, 28.5, 14.7, and 25.0% with a small amount of D-glucose, D-mannose, L-rhamnose, and D-glucuronic acid. Results indicated that the bioactive polysaccharides consisted of a (1,4)-Galp and (1,4)-GalAp back bone; (1,2)-Xyl and (1,2)-Rha might also comprise backbone or constitute side chain; linkage (1,5)-Ara and terminal fucosyl residues were also involved in the polysaccharides. Regarding bioactivity, removal of the terminal L-fucosyl residues reduced the TNF-α cytokine stimulating activity of the polysaccharides in a RAW 264.7 macrophage cell-line test, whereas NF-κB and TLR4 affected the polysaccharide-induced TNF-α production. © 2017

Abstract Image

ScienceDirect Link

10.1016/j.jfda.2017.07.006

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Fulltext URL

https://www.sciencedirect.com/science/article/pii/S1021949817301436/pdfft?md5=94e645c5838a4c3905f463f678feb0c2&pid=1-s2.0-S1021949817301436-main.pdf

Share

COinS