Keywords
Disease prediction, Metabolic disease, Microbiota, Novel probiotics
Abstract
The prevalence of metabolic disease has rising and affected over 1,000 million populations globally. Since the metabolic disease and its related complication are board, it has become the major health hazard of modern world. However, Long term medication of metabolic disease may cause serious side effects and risk for adverse health problems. Recently, emerging studies focus on exploring the mechanistic details of metabolic state in disease development and progression. Gut bacteria ecosystem was considered to play a pivotal role in regulating energy homeostasis and great associated with the development of metabolic disease. Accumulated evidences indicated that Akkermansia muciniphila, Faecalibacterium prausnitzii, and Roseburia hominis improve the balance of the microecology in the intestine of the host and have positive effects on enhancing nutrients absorption. Hence, the novel probiotics as therapeutic target to modify gut microbiota generally focus on improving microbiota dysbiosis, and offers new prospects for treating metabolic disease. In the present review, we discuss the significant roles and regulatory properties of specific bacterium in the context of intestinal microbial balance, explores the kinds of harmful/beneficial bacteria that were likely to act as indicator for metabolic disease. Further proposed a stepwise procedure in the basis of sequencing technology with that of innovative option to reestablish the microbial equilibrium and prevent metabolic disease.
Recommended Citation
Cheng, Hsin-Lin; Yen, Gow-Chin; Huang, Shih-Chien; Chen, Shiuan-Chih; and Hsu, Chin-Lin
(2022)
"The next generation beneficial actions of novel probiotics as potential therapeutic targets and prediction tool for metabolic diseases,"
Journal of Food and Drug Analysis: Vol. 30
:
Iss.
1
, Article 1.
Available at: https://doi.org/10.38212/2224-6614.3396
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Included in
Food Science Commons, Medicinal Chemistry and Pharmaceutics Commons, Pharmacology Commons, Toxicology Commons
Abstract Image